A Genetic Algorithm Hybrid for Constructing Optimal Response Surface Designs

Hybrid heuristic optimization methods can discover efficient experiment designs in situations where traditional designs cannot be applied, exchange methods are ineffective, and simple heuristics like simulated annealing fail to find good solutions. One such heuristic hybrid is GASA (genetic algorith...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quality and reliability engineering international 2004-11, Vol.20 (7), p.637-650
Hauptverfasser: Drain, David, Carlyle, W. Matthew, Montgomery, Douglas C., Borror, Connie, Anderson-Cook, Christine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hybrid heuristic optimization methods can discover efficient experiment designs in situations where traditional designs cannot be applied, exchange methods are ineffective, and simple heuristics like simulated annealing fail to find good solutions. One such heuristic hybrid is GASA (genetic algorithm–simulated annealing), developed to take advantage of the exploratory power of the genetic algorithm, while utilizing the local optimum exploitive properties of simulated annealing. The successful application of this method is demonstrated in a difficult design problem with multiple optimization criteria in an irregularly shaped design region. Copyright © 2004 John Wiley & Sons, Ltd.
ISSN:0748-8017
1099-1638
DOI:10.1002/qre.573