Global convergence of a kinetic model of chemotaxis to a perturbed Keller–Segel model

We consider a class of kinetic models of chemotaxis with two positive non-dimensional parameters coupled to a parabolic equation of the chemo-attractant. If both parameters are set equal zero, we have the classical Keller–Segel model for chemotaxis. We prove global existence of solutions of this two...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2006-02, Vol.64 (4), p.686-695
Hauptverfasser: Chalub, Fabio A.C.C., Kang, Kyungkeun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a class of kinetic models of chemotaxis with two positive non-dimensional parameters coupled to a parabolic equation of the chemo-attractant. If both parameters are set equal zero, we have the classical Keller–Segel model for chemotaxis. We prove global existence of solutions of this two-parameters kinetic model and prove convergence of this model to models of chemotaxis with global existence when one of these two parameters is set equal zero. In one case, we find as a limit model a kinetic model of chemotaxis while in the other case we find a perturbed Keller–Segel model with global existence of solutions.
ISSN:0362-546X
1873-5215
DOI:10.1016/j.na.2005.04.048