Artificial Intelligence–Guided Segmentation and Path Planning Software for Transthoracic Lung Biopsy
To validate the sensitivity and specificity of a 3-dimensional (3D) convolutional neural network (CNN) artificial intelligence (AI) software for lung lesion detection and to establish concordance between AI-generated needle paths and those used in actual biopsy procedures. This was a retrospective s...
Gespeichert in:
Veröffentlicht in: | Journal of vascular and interventional radiology 2024-05, Vol.35 (5), p.780-789.e1 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To validate the sensitivity and specificity of a 3-dimensional (3D) convolutional neural network (CNN) artificial intelligence (AI) software for lung lesion detection and to establish concordance between AI-generated needle paths and those used in actual biopsy procedures.
This was a retrospective study using computed tomography (CT) scans from 3 hospitals. Inclusion criteria were scans with 1–5 nodules of diameter ≥5 mm; exclusion criteria were poor-quality scans or those with nodules measuring |
---|---|
ISSN: | 1051-0443 1535-7732 |
DOI: | 10.1016/j.jvir.2024.02.006 |