Low Cost Si3N4/SiC Nanocomposites, Processing, RT and HT Properties

Silicon nitride - silicon carbide nanocomposite has been prepared by an in-situ method that utilizes formation of SiC nanograins by C+ SiO2 carbothermal reduction during the sintering process. The developed C/SiO2 derived nanocomposite consists of a silicon nitride matrix with an average Si3N4 matri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Key engineering materials 2006-01, Vol.317-318, p.185-190
Hauptverfasser: Šída, Vladimír, Šajgalík, Pavol, Lenčéš, Zoltán, Kašiarová, Monika, Dusza, Ján, Kovalčík, J., Hnatko, Miroslav
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Silicon nitride - silicon carbide nanocomposite has been prepared by an in-situ method that utilizes formation of SiC nanograins by C+ SiO2 carbothermal reduction during the sintering process. The developed C/SiO2 derived nanocomposite consists of a silicon nitride matrix with an average Si3N4 matrix grain diameter of approximately 200 nm with inter- and intra- granular SiC inclusions with sizes of approximately 150 nm and 40 nm, respectively. The mean value of room temperature 4-point bending strength is 670 MPa with the Weibull modulus of 7.5 and indentation fracture toughness of 7.4 MPa.m1/2. The creep behaviour was investigated in bending at temperatures from 1200°C to 1450°C, under stresses ranking from 50 to 150 MPa in air. A significantly enhanced creep resistance was achieved by the incorporation of SiC nanoparticles into the matrix. The inserts machined from this composite have three times longer life time compared to those available on the market.
ISSN:1013-9826
1662-9795
1662-9795
DOI:10.4028/www.scientific.net/KEM.317-318.185