Kinetics and Modelling of Bulk and Solution Diallyl Terephthalate Polymerization

Free radical polymerization kinetics of diallyl terephthalate (DAT) in solution was investigated with two different peroxide initiators: dicyclohexyl peroxydicarbonate (CHPC) and benzoyl peroxide (BPO) in temperature range from 50°C to 110°C, where ortho-xylene was used as a solvent. Conversion poin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of chemical reactor engineering 2006-10, Vol.4 (1), p.1329-1329
1. Verfasser: Hace, Iztok
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Free radical polymerization kinetics of diallyl terephthalate (DAT) in solution was investigated with two different peroxide initiators: dicyclohexyl peroxydicarbonate (CHPC) and benzoyl peroxide (BPO) in temperature range from 50°C to 110°C, where ortho-xylene was used as a solvent. Conversion points were measured using Fourier Transform Infrared (FTIR) measurements. Previously developed kinetic model for bulk DAT polymerization, was extended to solution DAT polymerization. The ratio of solvent chain - transfer rate constants to propagation rate constants of the polymerization system were found between 1.25 10-4 to 1.68 10-4 for various reaction conditions. They were obtained using the calculated initial polymerization rates and the number average molecular weight measurements made by GPC. The effect of different solvent fractions and initiator concentrations on the diffusion limitations were investigated. Only two kinetic parameters, kpd0 and ktd0 were obtained by fitting the kinetic model onto measured conversions for various reaction conditions at 0.2, 0.5 and 0.8 solvent fractions. Thus obtained kpd0 and ktd0 kinetic parameters were extrapolated to zero solvent fractions and from obtained values of kinetic parameters the conversion points for bulk DAT polymerization were calculated and compared to measured conversion points.
ISSN:1542-6580
1542-6580
DOI:10.2202/1542-6580.1329