Simultaneous Efficient Photocatalytic Hydrogen Evolution and Degradation of Dye Wastewater without Cocatalysts and Sacrificial Agents Based on g-C3 N5 and Hybridized Ni-MOF Derivative-CdS-DETA
Inspired by energy conversion and waste reuse, hybridized Ni-MOF derivative-CdS-DETA/g-C3 N5 , a type-II heterojunction photocatalyst, is synthesized by a hydrothermal method for simultaneous and highly efficient photocatalytic degradation and hydrogen evolution in dye wastewater. Without the additi...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-02, p.e2309577-e2309577 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Inspired by energy conversion and waste reuse, hybridized Ni-MOF derivative-CdS-DETA/g-C3 N5 , a type-II heterojunction photocatalyst, is synthesized by a hydrothermal method for simultaneous and highly efficient photocatalytic degradation and hydrogen evolution in dye wastewater. Without the addition of cocatalysts and sacrificial agents, the optimal MOF-CD(2)/CN5 (i.e. Ni-MOF derivative-CdS-DETA (20 wt.%)/g-C3 N5 ) exhibit good bifunctional catalytic activity, with a H2 evolution rate of 2974.4 µmol g-1 h-1 during the degradation of rhodamine B (RhB), and a removal rate of 99.97% for RhB. In the process of H2 -evolution-only, triethanolamine is used as a sacrificial agent, exhibiting a high H2 evolution rate (19663.1 µmol g-1 h-1 ) in the absence of a cocatalyst, and outperforming most similar related materials (such as MOF/g-C3 N5 , MOF-CdS, CdS/g-C3 N5 ). With the help of type-II heterojunction, holes are scavenged for the oxidative degradation of RhB, and electrons are used in the decomposition of water for H2 evolution during illumination. This work opens a new path for photocatalysts with dual functions of simultaneous efficient degradation and hydrogen evolution. |
---|---|
ISSN: | 1613-6829 |
DOI: | 10.1002/smll.202309577 |