Resection of DNA double-strand breaks activates Mre11–Rad50–Nbs1- and Rad9–Hus1–Rad1-dependent mechanisms that redundantly promote ATR checkpoint activation and end processing in Xenopus egg extracts

Abstract Sensing and processing of DNA double-strand breaks (DSBs) are vital to genome stability. DSBs are primarily detected by the ATM checkpoint pathway, where the Mre11–Rad50–Nbs1 (MRN) complex serves as the DSB sensor. Subsequent DSB end resection activates the ATR checkpoint pathway, where rep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2024-04, Vol.52 (6), p.3146-3163
Hauptverfasser: Tatsukawa, Kensuke, Sakamoto, Reihi, Kawasoe, Yoshitaka, Kubota, Yumiko, Tsurimoto, Toshiki, Takahashi, Tatsuro S, Ohashi, Eiji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Sensing and processing of DNA double-strand breaks (DSBs) are vital to genome stability. DSBs are primarily detected by the ATM checkpoint pathway, where the Mre11–Rad50–Nbs1 (MRN) complex serves as the DSB sensor. Subsequent DSB end resection activates the ATR checkpoint pathway, where replication protein A, MRN, and the Rad9–Hus1–Rad1 (9–1–1) clamp serve as the DNA structure sensors. ATR activation depends also on Topbp1, which is loaded onto DNA through multiple mechanisms. While different DNA structures elicit specific ATR-activation subpathways, the regulation and mechanisms of the ATR-activation subpathways are not fully understood. Using DNA substrates that mimic extensively resected DSBs, we show here that MRN and 9–1–1 redundantly stimulate Dna2-dependent long-range end resection and ATR activation in Xenopus egg extracts. MRN serves as the loading platform for ATM, which, in turn, stimulates Dna2- and Topbp1-loading. Nevertheless, MRN promotes Dna2-mediated end processing largely independently of ATM. 9–1–1 is dispensable for bulk Dna2 loading, and Topbp1 loading is interdependent with 9–1–1. ATR facilitates Mre11 phosphorylation and ATM dissociation. These data uncover that long-range end resection activates two redundant pathways that facilitate ATR checkpoint signaling and DNA processing in a vertebrate system. Graphical Abstract Graphical Abstract
ISSN:0305-1048
1362-4962
DOI:10.1093/nar/gkae082