Enhancing Neuroprotection in Mouse Model of Parkinson’s Disease through Protein Nanosystem Conjugation with ApoE Peptide for miR-124 Delivery

Parkinson’s disease (PD) affects millions of people’s lives worldwide. The main pathogenesis of PD is dopaminergic neuron necrosis and neuroinflammation mediated by activated microglia cells. In recent years, the anti-inflammatory ability and neuroprotective effects of miR-124 in PD models were well...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-02, Vol.16 (7), p.8199-8212
Hauptverfasser: Zhang, Juan, Cui, Bozhou, He, Ting, Hei, Ruoxuan, Yang, Lan, Liu, Chong, Wu, Xianan, Wang, Xi, Gao, Zhaowei, Lin, Fang, Zhang, Huizhong, Dong, Ke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Parkinson’s disease (PD) affects millions of people’s lives worldwide. The main pathogenesis of PD is dopaminergic neuron necrosis and neuroinflammation mediated by activated microglia cells. In recent years, the anti-inflammatory ability and neuroprotective effects of miR-124 in PD models were well proved, but the in vivo delivery of miR-124 remains challenging. Herein, we report a protein nanosystem modified with a brain-targeting peptide ApoE that could efficiently deliver miR-124 across the blood–brain barrier (BBB). This nanosystem showed good cell viability on brain endothelial cells and microglia cells, and administration of this nanosystem significantly decreased the neuroinflammation and dopaminergic neuron loss, as well as recovered parts of neurobehavioral deficits. This ApoE peptide-based protein nanosystem holds great promise for the delivery of RNA therapeutics to the brain and for realizing neuron protection in PD treatment.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.3c13849