ClimMob: Software to support experimental citizen science in agriculture
•ClimMob is a software package that facilitates experimental citizen science in agriculture.•ClimMob was designed to support tricot, a citizen science approach which allows farmers to make simple comparisons between crop varieties.•ClimMob facilitates implementation of experimental citizen science a...
Gespeichert in:
Veröffentlicht in: | Computers and electronics in agriculture 2024-02, Vol.217, p.None-None, Article 108539 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | •ClimMob is a software package that facilitates experimental citizen science in agriculture.•ClimMob was designed to support tricot, a citizen science approach which allows farmers to make simple comparisons between crop varieties.•ClimMob facilitates implementation of experimental citizen science at scale.
Experimental citizen science offers new ways to organize on-farm testing of crop varieties and other agronomic options. Its implementation at scale requires software that streamlines the process of experimental design, data collection and analysis, so that different organizations can support trials. This article considers ClimMob software developed to facilitate implementing experimental citizen science in agriculture. We describe the software design process, including our initial design choices, the architecture and functionality of ClimMob, and the methodology used for incorporating user feedback. Initial design choices were guided by the need to shape a workflow that is feasible for farmers and relevant for farmers, breeders and other decision-makers. Workflow and software concepts were developed concurrently. The resulting approach supported by ClimMob is triadic comparisons of technology options (tricot), which allows farmers to make simple comparisons between crop varieties or other agricultural technologies tested on farms. The software was built using Component-Based Software Engineering (CBSE), to allow for a flexible, modular design of software that is easy to maintain. Source is open-source and built on existing components that generally have a broad user community, to ensure their continuity in the future. Key components include Open Data Kit, ODK Tools, PyUtilib Component Architecture. The design of experiments and data analysis is done through R packages, which are all available on CRAN. Constant user feedback and short communication lines between the development teams and users was crucial in the development process. Development will continue to further improve user experience, expand data collection methods and media channels, ensure integration with other systems, and to further improve the support for data-driven decision-making. |
---|---|
ISSN: | 0168-1699 1872-7107 |
DOI: | 10.1016/j.compag.2023.108539 |