Electromigration failure in ultra-fine copper interconnects

This paper presents experimental evidence suggesting that electromigration (EM) can be a serious reliability threat when the dimension of Cu interconnects approaches the nanoscale range. To understand the failure mechanism prevailing in nanoscale Cu interconnects, single-level, 400-mm long interconn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2003-10, Vol.32 (10), p.988-993
Hauptverfasser: MICHAEL, Nancy L, KIM, Choong-Un, GILLESPIE, Paul, AUGUR, R. O. D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents experimental evidence suggesting that electromigration (EM) can be a serious reliability threat when the dimension of Cu interconnects approaches the nanoscale range. To understand the failure mechanism prevailing in nanoscale Cu interconnects, single-level, 400-mm long interconnects with various effective widths, ranging from 750 nm to 80 nm, were made, EM tested, and characterized in this investigation. The results indicate that interface EM (Cu/barrier) may be the predominant EM mechanism in all line widths. The evidence supporting the active Cu/barrier interface EM includes the fact that the EM lifetime is inversely proportional to the interface area fraction. Microscopic analysis of the failure sites also supports the conclusion of interface EM because voids and hillocks are found at the ends of the test strip, which is not possible if lines fail by grain-boundary EM in the test structure used in this study. In addition, our study finds evidence that failure is assisted by a secondary mechanism. The influence of this factor is particularly significant when the feature size is small, resulting in more uniform distribution of failure time in narrower lines. Although limited, evidence suggests that the secondary factor is probably attributed to pre-existing defects or grain boundaries.
ISSN:0361-5235
1543-186X
DOI:10.1007/s11664-003-0080-8