Effect of alumina-doping on grain boundary segregation-induced phase transformation in yttria-stabilized tetragonal zirconia polycrystal
The microstructure in a small amount of Al2O3-doped Y2O3-stabilized tetragonal zirconia polycrystal (Y-TZP) sintered at 1100–1650 °C was examined to clarify the effect of Al3+ ions segregated at grain boundaries on cubic-formation and grain-growth processes. The sintering rate in Y-TZP was remarkabl...
Gespeichert in:
Veröffentlicht in: | Journal of materials research 2006-09, Vol.21 (9), p.2278-2289 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The microstructure in a small amount of Al2O3-doped Y2O3-stabilized tetragonal zirconia polycrystal (Y-TZP) sintered at 1100–1650 °C was examined to clarify the effect of Al3+ ions segregated at grain boundaries on cubic-formation and grain-growth processes. The sintering rate in Y-TZP was remarkably enhanced by Al2O3-doping. In addition, at temperatures >1500 °C, grain growth remarkably proceeded, and the fraction of the cubic phase increased in comparison with that of undoped Y-TZP. High-resolution electron microscopy and nanoprobe x-ray energy dispersive spectroscopy measurements revealed that no amorphous layer existed along the grain-boundary faces in Al2O3-doped Y-TZP and that Y3+ and Al3+ ions segregated at grain boundaries over widths of ∼10 and ∼6 nm, respectively. At 1100 °C, Al3+ ions started to segregate at grain boundaries, and the segregation peak of Al3+ ions increased as the sintering temperature increased. Cubic-formation and grain-growth behaviors in Al2O3-doped Y-TZP were reasonably interpreted by taking into account the effect of Al3+ ions segregating along grain boundaries. |
---|---|
ISSN: | 0884-2914 2044-5326 |
DOI: | 10.1557/jmr.2006.0274 |