Inhibitory Activity of Flavonoid Scaffolds on SARS-CoV‑2 3CLpro: Insights from the Computational and Experimental Investigations

The emergence of the COVID-19 situation has become a global issue due to the lack of effective antiviral drugs for treatment. Flavonoids are a class of plant secondary metabolites that have antiviral activity against SARS-CoV-2 through inhibition of the main protease (3CLpro). In this study, 22 flav...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical information and modeling 2024-02, Vol.64 (3), p.874-891
Hauptverfasser: Khamto, Nopawit, Utama, Kraikrit, Boontawee, Panida, Janthong, Atchara, Tatieng, Suriya, Arthan, Supakorn, Choommongkol, Vachira, Sangthong, Padchanee, Yenjai, Chavi, Suree, Nuttee, Meepowpan, Puttinan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The emergence of the COVID-19 situation has become a global issue due to the lack of effective antiviral drugs for treatment. Flavonoids are a class of plant secondary metabolites that have antiviral activity against SARS-CoV-2 through inhibition of the main protease (3CLpro). In this study, 22 flavonoids obtained from natural sources and semisynthetic approaches were investigated for their inhibitory activity against SARS-CoV-2 3CLpro, along with cytotoxicity on Vero cells. The protein–ligand interactions were examined using molecular dynamics simulation. Moreover, QSAR analysis was conducted to clarify the structural effects on bioactivity. Accordingly, the in vitro investigation demonstrated that four flavonoids, namely, tectochrysin (7), 6″,6″-dimethylchromeno-[2″,3″:7,8]-flavone (9), panduratin A (19), and genistein (20), showed higher protease inhibitory activity compared to the standard flavonoid baicalein. Finally, our finding suggests that genistein (20), an isoflavone discovered in Millettia brandisiana, has potential for further development as a SARS-CoV-2 3CLpro inhibitor.
ISSN:1549-9596
1549-960X
1549-960X
DOI:10.1021/acs.jcim.3c01477