A feasible methodology for landslide susceptibility assessment in developing countries: A case-study of NW Nicaragua after Hurricane Mitch

In October 1998, Hurricane Mitch triggered a large number of landslides (mainly debris flows) in Honduras and Nicaragua, resulting in a high death toll and in considerable damage to property. In recent years, a number of risk assessment methodologies have been devised to mitigate natural disasters....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering geology 2005-08, Vol.80 (3), p.316-327
Hauptverfasser: Guinau, Marta, Pallàs, Raimon, Vilaplana, Joan Manuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In October 1998, Hurricane Mitch triggered a large number of landslides (mainly debris flows) in Honduras and Nicaragua, resulting in a high death toll and in considerable damage to property. In recent years, a number of risk assessment methodologies have been devised to mitigate natural disasters. However, due to scarcity of funds and lack of specialised personnel few of these methodologies are accessible to developing countries. To explore the potential application of relatively simple and affordable landslide susceptibility methodologies in such countries, we focused on a region in NW Nicaragua which was among the most severely hit during the Mitch event. Our study included (1) detailed field work to produce a high-resolution inventory landslide map at 1 : 10,000 scale, and (2) a selection of the relevant instability factors from a Terrain Units Map which had previously been generated in a project for rural development. Based on the combination of these two datasets and using GIS tools we developed a comparative analysis of failure-zones and terrain factors in an attempt to classify the land into zones according to the propensity to landslides triggered by heavy rainfalls. The resulting susceptibility map was validated by using a training and a test zone, providing results comparable to those reached in studies based in more sophisticated methodologies. Thus, we provide an example of a methodology which is simple enough to be fully comprehended by non-specialised technicians and which could be of help in landslide risk mitigation through implementation of non-structural measures, such as land planning or emergency measures.
ISSN:0013-7952
1872-6917
DOI:10.1016/j.enggeo.2005.07.001