Developing a transcatheter injectable nanoclay- alginate gel for minimally invasive procedures
Shear-thinning materials have held considerable promise as embolic agents due to their capability of transition between solid and liquid state. In this study, a laponite nanoclay (NC)/alginate gel embolic agent was developed, characterized, and studied for transcatheter based minimally invasive proc...
Gespeichert in:
Veröffentlicht in: | Journal of the mechanical behavior of biomedical materials 2024-04, Vol.152, p.106448-106448, Article 106448 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Shear-thinning materials have held considerable promise as embolic agents due to their capability of transition between solid and liquid state. In this study, a laponite nanoclay (NC)/alginate gel embolic agent was developed, characterized, and studied for transcatheter based minimally invasive procedures. Both NC and alginate are biocompatible and FDA-approved. Due to electrostatic interactions, the NC/alginate gels exhibit shear-thinning properties that are desirable for transcatheter delivery. The unique shear-thinning nature of the NC/alginate gel allows it to function as a fluid-like substance during transcatheter delivery and as a solid-like embolic agent once deployed. To ensure optimal performance and safety in clinical applications, the rheological characteristics were thoroughly investigated to optimize the mechanical properties of the NC/alginate gel, including storage modulus, yield stress/strain, and thixotropy. To improve physicians' experience and enhance the predictability of gel delivery, a combination of experimental and theoretical approaches was used to assess the injection force required for successful delivery of the gel through clinically employed catheters. Overall, NC/alginate gel exhibited excellent stability and tunable injectability by optimizing the composition of each component. These findings highlight the gel's potential as a robust embolic agent for a wide range of minimally invasive procedures.
[Display omitted]
•A group of nanoclay-alginate gels was developed as shear-thinning embolic agents.•The gels exhibited tunable rheological properties for varying embolization conditions.•Transcatheter injectability was assessed for improved physician experience.•The embolic gels showed good stability, sterility, hemo- and bio-compatibility. |
---|---|
ISSN: | 1751-6161 1878-0180 |
DOI: | 10.1016/j.jmbbm.2024.106448 |