Personalized Pressure Conditions and Calibration for a Predictive Computational Model of Coronary and Myocardial Blood Flow

Predictive modeling of hyperemic coronary and myocardial blood flow (MBF) greatly supports diagnosis and prognostic stratification of patients suffering from coronary artery disease (CAD). In this work, we propose a novel strategy, using only readily available clinical data, to build personalized in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of biomedical engineering 2024-05, Vol.52 (5), p.1297-1312
Hauptverfasser: Montino Pelagi, Giovanni, Baggiano, Andrea, Regazzoni, Francesco, Fusini, Laura, Alì, Marco, Pontone, Gianluca, Valbusa, Giovanni, Vergara, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Predictive modeling of hyperemic coronary and myocardial blood flow (MBF) greatly supports diagnosis and prognostic stratification of patients suffering from coronary artery disease (CAD). In this work, we propose a novel strategy, using only readily available clinical data, to build personalized inlet conditions for coronary and MBF models and to achieve an effective calibration for their predictive application to real clinical cases. Experimental data are used to build personalized pressure waveforms at the aortic root, representative of the hyperemic state and adapted to surrogate the systolic contraction, to be used in computational fluid-dynamics analyses. Model calibration to simulate hyperemic flow is performed in a “blinded” way, not requiring any additional exam. Coronary and myocardial flow simulations are performed in eight patients with different clinical conditions to predict FFR and MBF. Realistic pressure waveforms are recovered for all the patients. Consistent pressure distribution, blood velocities in the large arteries, and distribution of MBF in the healthy myocardium are obtained. FFR results show great accuracy with a per-vessel sensitivity and specificity of 100% according to clinical threshold values. Mean MBF shows good agreement with values from stress-CTP, with lower values in patients with diagnosed perfusion defects. The proposed methodology allows us to quantitatively predict FFR and MBF, by the exclusive use of standard measures easily obtainable in a clinical context. This represents a fundamental step to avoid catheter-based exams and stress tests in CAD diagnosis.
ISSN:0090-6964
1573-9686
DOI:10.1007/s10439-024-03453-9