Artificial intelligence-based prediction model for the elemental occurrence form of tailings and mine wastes

With the advent of the second industrial revolution, mining and metallurgical processes generate large volumes of tailings and mine wastes (TMW), which worsens global environmental pollution. Studying the occurrence of metal and metalloid elements in TMW is an effective approach to evaluating pollut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental research 2024-05, Vol.249, p.118378-118378, Article 118378
Hauptverfasser: Qi, Chongchong, Hu, Tao, Zheng, Jiashuai, Li, Kechao, Zhou, Nana, Zhou, Min, Chen, Qiusong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the advent of the second industrial revolution, mining and metallurgical processes generate large volumes of tailings and mine wastes (TMW), which worsens global environmental pollution. Studying the occurrence of metal and metalloid elements in TMW is an effective approach to evaluating pollution linked to TMW. However, traditional laboratory-based measurements are complicated and time-consuming; thus, an empirical method is urgently needed that can rapidly and accurately determine elemental occurrence forms. In this study, a model combining Bayesian optimization and random forest (RF) approaches was proposed to predict TMW occurrence forms. To build the RF model, a dataset of 2376 samples was obtained, with mineral composition, elemental properties, and total concentration composition used as inputs and the percentage of occurrence forms as the model output. The correlation coefficient (R), coefficient of determination, mean absolute error, root mean squared error, and root mean squared logarithmic error metrics were used for model evaluation. After Bayesian optimization, the optimal RF model achieved accurate predictive performance, with R values of 0.99 and 0.965 on the training and test sets, respectively. The feature significance was analyzed using feature importance and Shapley additive explanatory values, which revealed that the electronegativity and total concentration of the elements were the two features with the greatest influence on the model output. As the electronegativity of an element increases, its corresponding residual fraction content gradually decreases. This is because the solubility typically increases with the solvent's polarity and electronegativity. Overall, this study proposes an RF model based on the nature of TMW that can rapidly and accurately predict the percentage values of metal and metalloid element occurrence forms in TMW. This method can minimize testing time requirements and help to assess TMW pollution risks, as well as further promote safe TMW management and recycling. [Display omitted] •A model was proposed for the elemental occurrence forms of tailings and mine wastes (TMW).•The elemental occurrence forms in TMW can be predicted quickly and accurately.•Electronegativity and total concentration were the most important variables.•The influential mechanism of input features on occurrence forms was studied.
ISSN:0013-9351
1096-0953
DOI:10.1016/j.envres.2024.118378