Anisotropic mechanical properties of α-MoO3 nanosheets
The mechanical behaviors of 2D materials are fundamentally important for their potential applications in various fields. α-Molybdenum trioxide (α-MoO3) crystals with unique electronic, optical, and electrochemical properties, have attracted extensive attention for their use in optoelectronic and ene...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2024-02, Vol.16 (8), p.4140-4147 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The mechanical behaviors of 2D materials are fundamentally important for their potential applications in various fields. α-Molybdenum trioxide (α-MoO3) crystals with unique electronic, optical, and electrochemical properties, have attracted extensive attention for their use in optoelectronic and energy conversion devices. From a mechanical viewpoint, however, there is limited information available on the mechanical properties of α-MoO3. Here, we developed a capillary force-assisted peeling method to directly transfer α-MoO3 nanosheets onto arbitrary substrates. Comparatively, we could effectively avoid surface contamination arising from the polymer-assisted transfer method. Furthermore, with the help of an in situ push-to-pull (PTP) device during SEM, we systematically investigated the tensile properties of α-MoO3. The measured Young's modulus and fracture strengths along the c-axis (91.7 ± 13.7 GPa and 2.1 ± 0.9 GPa, respectively) are much higher than those along the a-axis (55.9 ± 8.6 GPa and 0.8 ± 0.3 GPa, respectively). The in-plane mechanical anisotropy ratio can reach ∼1.64. Both Young's modulus and the fracture strength of MoO3 show apparent size dependence. Additionally, the multilayer α-MoO3 nanosheets exhibited brittle fracture with interplanar sliding due to poor van der Waals interaction. Our study provides some key points regarding the mechanical properties and fracture behavior of layered α-MoO3 nanosheets. |
---|---|
ISSN: | 2040-3364 2040-3372 |
DOI: | 10.1039/d3nr06427a |