Stability Enhancement in All‐Inorganic Perovskite Light Emitting Diodes via Dual Encapsulation
Addressing the challenge of lighting stability in perovskite white light emitting diodes (WLEDs) is crucial for their commercial viability. CsPbX3 (X = Cl, Br, I, or mixed) nanocrystals (NCs) are promising for next‐generation lighting due to their superior optical and electronic properties. However,...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-07, Vol.20 (28), p.e2310478-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Addressing the challenge of lighting stability in perovskite white light emitting diodes (WLEDs) is crucial for their commercial viability. CsPbX3 (X = Cl, Br, I, or mixed) nanocrystals (NCs) are promising for next‐generation lighting due to their superior optical and electronic properties. However, the inherent soft material structure of CsPbX3 NCs is particularly susceptible to the elevated temperatures associated with prolonged WLED operation. Additionally, these NCs face stability challenges in high humidity environments, leading to reduced lighting performance. This study introduces a two‐step dual encapsulation method, resulting in CsPbBr3@SiO2/Al2SiO5 composite fibers (CFs) with enhanced optical stability under extreme conditions. In testing, WLEDs incorporating these CFs, even under prolonged operation at high power (100 mA for 9 h), maintain consistent electroluminescence (EL) intensity and optoelectronic parameters, with surface temperatures reaching 84.2 °C. Crucially, when subjected to 85 °C and 85% relative humidity for 200 h, the WLEDs preserve 97% of their initial fluorescence efficiency. These findings underscore the efficacy of the dual encapsulation strategy in significantly improving perovskite material stability, marking a significant step toward their commercial application in optoelectronic lighting.
In order to solve the stability problem of perovskite white light‐emitting diodes (WLED) for sustained illumination, the two‐step dual encapsulation method is proposed. The acquired CsPbBr3@SiO2/Al2SiO5 composite fibers (CFs) exhibit higher optical stability under extreme environments, marking a significant step toward the commercial application of perovskite materials in optoelectronic lighting. |
---|---|
ISSN: | 1613-6810 1613-6829 1613-6829 |
DOI: | 10.1002/smll.202310478 |