Spatiotemporal Heterogeneity of Temperature and Catalytic Activation within Individual Catalyst Particles

Temperature is a critical parameter in chemical conversion, significantly affecting the reaction kinetics and thermodynamics. Measuring temperature inside catalyst particles of industrial interest (∼micrometers to millimeters), which is crucial for understanding the evolution of chemical dynamics at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2024-02, Vol.146 (7), p.4958-4972
Hauptverfasser: Tian, Yu, Gao, Mingbin, Xie, Hua, Xu, Shuliang, Ye, Mao, Liu, Zhongmin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Temperature is a critical parameter in chemical conversion, significantly affecting the reaction kinetics and thermodynamics. Measuring temperature inside catalyst particles of industrial interest (∼micrometers to millimeters), which is crucial for understanding the evolution of chemical dynamics at catalytic active sites during reaction and advancing catalyst designs, however, remains a big challenge. Here, we propose an approach combining two-photon confocal microscopy and state-of-the-art upconversion luminescence (UL) imaging to measure the spatiotemporal-resolved temperature within individual catalyst particles in the industrially significant methanol-to-hydrocarbons reaction. Specifically, catalyst particles containing zeolites and functional nanothermometers were fabricated using microfluidic chips. Our experimental results directly demonstrate that the zeolite density and particle size can alter the temperature distribution within a single catalyst particle. Importantly, the observed temperature heterogeneity plays a decisive role in the activation of the reaction intermediate and the utilization of active sites. We expect that this work opens a venue for unveiling the reaction mechanism and kinetics within industrial catalyst particles by considering temperature heterogeneity.
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.3c14305