Using electric fields to control insects: current applications and future directions
Abstract Chemical-based interventions are mostly used to control insects that are harmful to human health and agriculture or that simply cause a nuisance. An overreliance on these insecticides however raises concerns for the environment, human health, and the development of resistance, not only in t...
Gespeichert in:
Veröffentlicht in: | Journal of insect science (Tucson, Ariz.) Ariz.), 2024-01, Vol.24 (1) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Chemical-based interventions are mostly used to control insects that are harmful to human health and agriculture or that simply cause a nuisance. An overreliance on these insecticides however raises concerns for the environment, human health, and the development of resistance, not only in the target species. As such, there is a critical need for the development of novel nonchemical technologies to control insects. Electrocution traps using UV light as an attractant are one classical nonchemical approach to insect control but lack the specificity necessary to target only pest insects and to avoid harmless or beneficial species. Here we review the fundamental physics behind electric fields (EFs) and place them in context with electromagnetic fields more broadly. We then focus on how novel uses of strong EFs, some of which are being piloted in the field and laboratory, have the potential to repel, capture, or kill (electrocute) insects without the negative side effects of other classical approaches. As EF–insect science remains in its infancy, we provide recommendations for future areas of research in EF–insect science. |
---|---|
ISSN: | 1536-2442 1536-2442 |
DOI: | 10.1093/jisesa/ieae007 |