Ferroptosis: Mechanisms and role in diabetes mellitus and its complications
Diabetes mellitus (DM) and its complications are major diseases that affect human health and pose a serious threat to global public health. Although the prevention and treatment of DM and its complications are constantly being revised, optimal treatment strategies remain unavailable. Further explora...
Gespeichert in:
Veröffentlicht in: | Ageing research reviews 2024-02, Vol.94, p.102201, Article 102201 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Diabetes mellitus (DM) and its complications are major diseases that affect human health and pose a serious threat to global public health. Although the prevention and treatment of DM and its complications are constantly being revised, optimal treatment strategies remain unavailable. Further exploration of new anti-diabetic strategies is an arduous task. Revealing the pathological changes and molecular mechanisms of DM and its complications is the cornerstone for exploring new therapeutic strategies. Ferroptosis is a type of newly discovered iron-dependent regulated cell death. Notably, the role of ferroptosis in the occurrence, development, and pathogenesis of DM and its complications has gradually been revealed. Numerous studies have shown that ferroptosis plays an important role in the pathophysiology and pathogenesis of DM and its associated complications. The aim of this review is to discuss the known underlying mechanisms of ferroptosis, the relationship between ferroptosis and DM, and the relationship between ferroptosis as a mode of cell death and diabetic kidney disease, diabetic retinopathy, diabetic cardiomyopathy, diabetic osteoporosis, diabetes-associated cognitive dysfunction, DM-induced erectile dysfunction, and diabetic atherosclerosis.
[Display omitted]
•Ferroptosis is a form of iron-dependent regulated cell death driven by lipid peroxidation.•The hyperglycemic environment in DM promotes the activation of ferroptosis-related pathways.•Ferroptosis has several potential targets in DM and its complications.•The treatment strategies of ferroptosis in DM and its complications remain to be further studied. |
---|---|
ISSN: | 1568-1637 1872-9649 1872-9649 |
DOI: | 10.1016/j.arr.2024.102201 |