Flow-based control of temperature in long ducts
Flow-based control of a thermal system with a long duct and heat loss to the environment is analyzed. A Proportional-Integral controller is used to regulate the duct outlet temperature by using the flow velocity as control input. The one-dimensional energy equation in Eulerian and Lagrangian forms a...
Gespeichert in:
Veröffentlicht in: | International journal of heat and mass transfer 2004-11, Vol.47 (23), p.4995-5009 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Flow-based control of a thermal system with a long duct and heat loss to the environment is analyzed. A Proportional-Integral controller is used to regulate the duct outlet temperature by using the flow velocity as control input. The one-dimensional energy equation in Eulerian and Lagrangian forms are numerically solved. The non-linear dynamics can be represented by an integral equation in terms of the residence time which acts as a delay. A linear stability analysis leads to a characteristic transcendental equation which is examined for different orders of the residence time. Pontryagin’s theorem on the zeros of exponential polynomials is used to obtain stability maps as a function of system parameters. Numerical simulations are performed to verify the predictions, determine super- and sub-critical instabilities, and evaluate the amplitude and frequency of limit-cycle oscillations. |
---|---|
ISSN: | 0017-9310 1879-2189 |
DOI: | 10.1016/j.ijheatmasstransfer.2004.06.017 |