FET-integrated CPW and the application in filter synthesis design method on traveling-wave switch above 100 GHz

A new transmission-line concept, called the field-effect transistor (FET)-integrated coplanar waveguide (CPW), is proposed. This concept treats the passive two-finger FET as CPW and, thus, the scaling rule is more accurate than the previous model, especially in high frequency. The extraction approac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on microwave theory and techniques 2006-05, Vol.54 (5), p.2090-2097
Hauptverfasser: Zuo-Min Tsai, Mei-Chao Yeh, Hong-Yeh Chang, Ming-Fong Lei, Lin, K.-Y., Chin-Shen Lin, Wang, Huei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new transmission-line concept, called the field-effect transistor (FET)-integrated coplanar waveguide (CPW), is proposed. This concept treats the passive two-finger FET as CPW and, thus, the scaling rule is more accurate than the previous model, especially in high frequency. The extraction approach of the parameters of the FET-integrated CPW is also included. With this concept, the design procedure of traveling-wave switches can be equivalent to a filter synthesis problem. Based on this design procedure, a single-pole single-throw and a single-pole double-throw traveling-wave switch have been realized and measured using 0.15-/spl mu/m high-linearity AlGaAs/InGaAs/GaAs pseudomorphic high electron-mobility transistors. Finally, the frequency limitation of the traveling-wave switches is also discussed. The results show the FET-integrated CPW is the most efficient way to overcome the frequency limitations of traveling-wave switches, achieving operation frequency to 135 GHz, the highest frequency reported to date.
ISSN:0018-9480
1557-9670
DOI:10.1109/TMTT.2006.873629