WSB1, a Hypoxia-Inducible E3 Ligase, Promotes Myofibroblast Accumulation and Attenuates Alveolar Epithelial Regeneration in Mouse Lung Fibrosis

Idiopathic pulmonary fibrosis is a progressive interstitial lung disease for which there is no curative therapy available. Repetitive alveolar epithelial injury repair, myofibroblast accumulation, and excessive collagen deposition are key pathologic features of idiopathic pulmonary fibrosis, eventua...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The American journal of pathology 2024-05, Vol.194 (5), p.656-672
Hauptverfasser: Chong, Lei, Zou, Lihui, Xiang, Liyan, Song, Xinyue, Miao, Wanqi, Yan, Xihua, Xu, Ming, Ling, Gongxia, El Agha, Elie, Bellusci, Saverio, Lou, Zhenkun, Zhang, Hailin, Zhang, Jin-San
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Idiopathic pulmonary fibrosis is a progressive interstitial lung disease for which there is no curative therapy available. Repetitive alveolar epithelial injury repair, myofibroblast accumulation, and excessive collagen deposition are key pathologic features of idiopathic pulmonary fibrosis, eventually leading to cellular hypoxia and respiratory failure. The precise mechanism driving this complex maladaptive process remains inadequately understood. WD repeat and suppressor of cytokine signaling box containing 1 (WSB1) is an E3 ubiquitin ligase, the expression of which is associated strongly with hypoxia, and forms a positive feedback loop with hypoxia-inducible factor 1α (HIF-1α) under anoxic condition. This study explored the expression, cellular distribution, and function of WSB1 in bleomycin (BLM)-induced mouse lung injury and fibrosis. WSB1 expression was highly induced by BLM injury and correlated with the progression of lung fibrosis. Significantly, conditional deletion of Wsb1 in adult mice ameliorated BLM-induced pulmonary fibrosis. Phenotypically, Wsb1-deficient mice showed reduced lipofibroblast to myofibroblast transition, but enhanced alveolar type 2 proliferation and differentiation into alveolar type 1 after BLM injury. Proteomic analysis of mouse lung tissues identified caveolin 2 as a potential downstream target of WSB1, contributing to BLM-induced epithelial injury repair and fibrosis. These findings unravel a vital role for WSB1 induction in lung injury repair, thus highlighting it as a potential therapeutic target for pulmonary fibrosis. [Display omitted]
ISSN:0002-9440
1525-2191
1525-2191
DOI:10.1016/j.ajpath.2024.01.010