An integrated mechanical degradation model to explore the mechanical response of a bioresorbable polymeric scaffold
Simulation of bioresorbable medical devices is hindered by the limitations of current material models. Useful simulations require that both the short- and long-term response must be considered; existing models are not physically-based and provide limited insight to guide performance improvements. Th...
Gespeichert in:
Veröffentlicht in: | Journal of the mechanical behavior of biomedical materials 2024-04, Vol.152, p.106419-106419, Article 106419 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Simulation of bioresorbable medical devices is hindered by the limitations of current material models. Useful simulations require that both the short- and long-term response must be considered; existing models are not physically-based and provide limited insight to guide performance improvements. This study presents an integrated degradation framework which couples a physically-based degradation model, which predicts changes in both crystallinity (Xc) and molecular weight (Mn), with the results of a micromechanical model, which predicts the effective properties of the semicrystalline polymer. This degradation framework is used to simulate the deployment of a bioresorbable PLLA (Poly (L-lactide) stent into a mock vessel and the subsequent mechanical response during degradation under different diffusion boundary conditions representing neointimal growth. A workflow is established in a commercial finite element code that couples both the immediate and long-term responses. Clinically relevant lumen loss is reported and used to compare different responses and the effect of neo-intimal tissue regrowth post-implantation on degradation and on the mechanical response is assessed. In addition, the effects of possible changes in Xc, which could occur during processing and stent deployment, are explored. |
---|---|
ISSN: | 1751-6161 1878-0180 |
DOI: | 10.1016/j.jmbbm.2024.106419 |