Amplification-Free Digital Immunoassay down to the Attomolar Level by Synergistic Sedimentation of Brownian Motion Suppression and Dehydration Transfer

Amplification-free digital immunoassays (DIAs) typically utilize optical nanoparticles to enhance single immunocomplex molecule detection. The efficiency and uniformity of transferring the nanoparticles from a bulk solution to a solid surface determine the limit of detection (LOD) and the accuracy o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2024-02, Vol.96 (7), p.3054-3061
Hauptverfasser: Zhang, Qingquan, Chai, Wenwen, Pan, Xiaoyan, Gai, Hongwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Amplification-free digital immunoassays (DIAs) typically utilize optical nanoparticles to enhance single immunocomplex molecule detection. The efficiency and uniformity of transferring the nanoparticles from a bulk solution to a solid surface determine the limit of detection (LOD) and the accuracy of DIAs. Previous methods suffer from issues like low efficiency, nonuniform distribution, and particle aggregation. Here, we present a novel technique named synergistic sedimentation of Brownian motion suppression and dehydration transfer (SynSed) for nanoparticles using water-soluble polymers. The efficiency of transferring quantum dots (QDs) was increased from 10.7 to 91.4%, and the variation in QD distribution was restricted to 8.8%. By incorporating SynSed into DIAs, we achieved a remarkable reduction in the LOD (down to 3.9 aM) for carcinoembryonic antigen and expanded the dynamic range to cover 3 orders of magnitude in concentration, ranging from 0.01 to 10 fM. DIAs enhanced with SynSed possess ultrahigh sensitivity, advanced accuracy, and specificity, offering a great premise in early disease diagnostics, risk stratification, and treatment response monitoring.
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.3c05066