Heavy metals prediction in coastal marine sediments using hybridized machine learning models with metaheuristic optimization algorithm
This study proposes different standalone models viz: Elman neural network (ENN), Boosted Tree algorithm (BTA), and f relevance vector machine (RVM) for modeling arsenic (As (mg/kg)) and zinc (Zn (mg/kg)) in marine sediments owing to anthropogenic activities. A heuristic algorithm based on the potent...
Gespeichert in:
Veröffentlicht in: | Chemosphere (Oxford) 2024-03, Vol.352, p.141329-141329, Article 141329 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study proposes different standalone models viz: Elman neural network (ENN), Boosted Tree algorithm (BTA), and f relevance vector machine (RVM) for modeling arsenic (As (mg/kg)) and zinc (Zn (mg/kg)) in marine sediments owing to anthropogenic activities. A heuristic algorithm based on the potential of RVM and a flower pollination algorithm (RVM-FPA) was developed to improve the prediction performance. Several evaluation indicators and graphical methods coupled with visualized cumulative probability function (CDF) were used to evaluate the accuracy of the models. Akaike (AIC) and Schwarz (SCI) information criteria based on Dickey-Fuller (ADF) and Philip Perron (PP) tests were introduced to check the reliability and stationarity of the data. The prediction performance in the verification phase indicated that RVM-M2 (PBAIS = -o.0465, MAE = 0.0335) and ENN-M2 (PBAIS = 0.0043, MAE = 0.0322) emerged as the best model for As (mg/kg) and Zn (mg/kg), respectively. In contrast with the standalone approaches, the simulated hybrid RVM-FPA proved merit and the most reliable, with a 5 % and 18 % predictive increase for As (mg/kg) and Zn (mg/kg), respectively. The study's findings validated the potential for estimating complex HMs through intelligent data-driven models and heuristic optimization. The study also generated valuable insights that can inform the decision-makers and stockholders for environmental management strategies.
[Display omitted]
•New hybrid machine learning (ML) models were developed for heavy metals prediction.•As (mg/kg) and zinc Zn (mg/kg) in marine sediments Algeciras Bay were predicted.•Akaike and Schwarz information criteria were used for data stationarity appraisal.•The proposed hybrid ML model exhibited the superior prediction performance.•The study provides insights for environmental decision-makers for proper management. |
---|---|
ISSN: | 0045-6535 1879-1298 |
DOI: | 10.1016/j.chemosphere.2024.141329 |