PbS Quantum Dots Ink with Months-Long Shelf-Lifetime Enabling Scalable and Efficient Short-Wavelength Infrared Photodetectors
The phase-transfer ligand exchange of PbS quantum dots (QDs) has substantially simplified device fabrication giving hope for future industrial exploitation. However, this technique when applied to QDs of large size (>4 nm) gives rise to inks with poor colloidal stability, thus hindering the devel...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2024-05, Vol.36 (19), p.e2311526-e2311526 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The phase-transfer ligand exchange of PbS quantum dots (QDs) has substantially simplified device fabrication giving hope for future industrial exploitation. However, this technique when applied to QDs of large size (>4 nm) gives rise to inks with poor colloidal stability, thus hindering the development of QDs photodetectors in short-wavelength infrared range. Here, it is demonstrated that methylammonium lead iodide ligands can provide sufficient passivation of PbS QDs of size up to 6.7 nm, enabling inks with a minimum of ten-week shelf-life time, as proven by optical absorption and solution-small angle X-ray scattering. Furthermore, the maximum linear electron mobility of 4.7 × 10
cm
V
s
is measured in field-effect transistors fabricated with fresh inks, while transistors fabricated with the same solution after ten-week storage retain 74% of the average starting electron mobility, demonstrating the outstanding quality both of the fresh and aged inks. Finally, photodetectors fabricated via blade-coating exhibit 76% external quantum efficiency at 1300 nm and 1.8 × 10
Jones specific detectivity, values comparable with devices fabricated using ink with lower stability and wasteful methods such as spin-coating. |
---|---|
ISSN: | 0935-9648 1521-4095 |
DOI: | 10.1002/adma.202311526 |