Insight into the Mechanism Underlying the Reduction of Digestibility and IgG/IgE Binding Ability in Ovalbumin during Different High-Temperature Conduction Modes-Induced Glycation
Effects of different high-temperature conduction modes [high-temperature air conduction (HAC), high-temperature contact conduction (HCC), high-temperature steam conduction (HSC)]-induced glycation on the digestibility and IgG/IgE-binding ability of ovalbumin (OVA) were studied and the mechanisms wer...
Gespeichert in:
Veröffentlicht in: | Journal of agricultural and food chemistry 2024-02, Vol.72 (5), p.2801-2812 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Effects of different high-temperature conduction modes [high-temperature air conduction (HAC), high-temperature contact conduction (HCC), high-temperature steam conduction (HSC)]-induced glycation on the digestibility and IgG/IgE-binding ability of ovalbumin (OVA) were studied and the mechanisms were investigated. The conformation in OVA-HSC showed minimal structural changes based on circular dichroism, fluorescence, and ultraviolet spectroscopy. The degree of hydrolysis analysis indicated that glycated OVA was more resistant to digestive enzymes. Liquid chromatography–Orbitrap mass spectrometry identified 11, 14, and 15 glycation sites in OVA-HAC, OVA-HCC, and OVA-HSC, respectively. The IgG/IgE-binding ability of OVA was reduced during glycation and digestion, and the interactions among glycation, allergenicity, and digestibility were further investigated. Glycation sites masked the IgG/IgE epitopes resulting in a reduction in allergenicity. Digestion enzymes destroyed the IgG/IgE epitopes thus reducing allergenicity. Meanwhile, the glycation site in proximity to the digestion site of pepsin was observed to cause a reduction in digestibility. |
---|---|
ISSN: | 0021-8561 1520-5118 |
DOI: | 10.1021/acs.jafc.3c08882 |