Enhancement of mechanical and barrier properties of chitosan-based bionanocomposites films reinforced with eggshell-derived hydroxyapatite nanoparticles
In this study, Hydroxyapatite nanoparticles (HANPs), derived from eggshell waste, were employed to reinforce chitosan biopolymer-based films through the solvent-casting method. The impact of varying HANPs content (1%, 3%, 5%, and 10 wt %) in bionanocomposites was investigated. The influence of HANPs...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2024-03, Vol.261 (Pt 2), p.129764-129764, Article 129764 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, Hydroxyapatite nanoparticles (HANPs), derived from eggshell waste, were employed to reinforce chitosan biopolymer-based films through the solvent-casting method. The impact of varying HANPs content (1%, 3%, 5%, and 10 wt %) in bionanocomposites was investigated. The influence of HANPs addition on the final film properties was comprehensively analyzed using Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), Dynamic Mechanical Analysis (DMA), mechanical (tensile) testing, and Water Vapor Permeability (WVP). The morphological aspects of bionanocomposites and the dispersion of nanoparticles within the matrix were studied using Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and X-ray Diffraction (XRD). The structural changes in the films were probed using Fourier-Transform Infrared Spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS) techniques. Results indicated that the addition of 1% and 3% of HANPs exhibited a higher glass transition temperature and improved thermal stability in bionanocomposites. Films with 3% HANPs content exhibited a notable increase in tensile strength, showing a 61.54% increase, while films with 1% HANPs content displayed a 52% reduction in WVP compared to pristine chitosan films. These findings underscore the significant potential of chitosan-hydroxyapatite bionanocomposite films for applications in food packaging applications. |
---|---|
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2024.129764 |