Effects of decalcification on the microstructure and surface area of cement and tricalcium silicate pastes
Thin coupons of white portland cement (WPC) and tricalcium silicate paste were decalcified by leaching in concentrated ammonium nitrate solutions, resulting in calcium-to-silicon molar ratios (C/S) ranging from 3.0 (control) down to 0.3. The microstructure and surface area were measured using both s...
Gespeichert in:
Veröffentlicht in: | Cement and concrete research 2004-12, Vol.34 (12), p.2297-2307 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Thin coupons of white portland cement (WPC) and tricalcium silicate paste were decalcified by leaching in concentrated ammonium nitrate solutions, resulting in calcium-to-silicon molar ratios (C/S) ranging from 3.0 (control) down to 0.3. The microstructure and surface area were measured using both small-angle neutron scattering (SANS) and nitrogen gas sorption. The intensity in the SANS data regime corresponding to the volume fractal C-S-H gel phase increased significantly on leaching, and the total surface area per unit specimen volume measured by SANS doubled on leaching from C/S=3.0 to near C/S=1.0. The nitrogen BET surface area of the WPC pastes, expressed in the same units, increased on decalcification as well, although not as sharply. The primary cause of these changes is a transformation of the high-density “inner product” C-S-H gel, which normally has a low specific surface area as measured by SANS and nitrogen gas sorption, into a morphology with a high specific surface area. The volume fractal exponent corresponding to the C-S-H gel phase decreased with decalcification from 2.3 to 2.0, indicating that the equiaxed 5 nm C-S-H globule building blocks that form the volume fractal microstructure of normal, unleached cement paste are transformed by decalcification into sheetlike structures of increasing thickness. |
---|---|
ISSN: | 0008-8846 1873-3948 |
DOI: | 10.1016/j.cemconres.2004.04.007 |