Nonconventional Strain Engineering for Uniform Biaxial Tensile Strain in MoS2 Thin Film Transistors
Strain engineering has been employed as a crucial technique to enhance the electrical properties of semiconductors, especially in Si transistor technologies. Recent theoretical investigations have suggested that strain engineering can also markedly enhance the carrier mobility of two-dimensional (2D...
Gespeichert in:
Veröffentlicht in: | ACS nano 2024-02, Vol.18 (5), p.4414-4423 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Strain engineering has been employed as a crucial technique to enhance the electrical properties of semiconductors, especially in Si transistor technologies. Recent theoretical investigations have suggested that strain engineering can also markedly enhance the carrier mobility of two-dimensional (2D) transition-metal dichalcogenides (TMDs). The conventional methods used in strain engineering for Si and other bulk semiconductors are difficult to adapt to ultrathin 2D TMDs. Here, we report a strain engineering approach to apply the biaxial tensile strain to MoS2. Metal-organic chemical vapour deposition (MOCVD)-grown large-area MoS2 films were transferred onto SiO2/Si substrate, followed by the selective removal of the underneath Si. The release of compressive residual stress in the oxide layer induces strain in MoS2 on top of the SiO2 layer. The amount of strain can be precisely controlled by the thickness of oxide stressors. After the transistors were fabricated with strained MoS2 films, the array of strained transistors was transferred onto plastic substrates. This process ensured that the MoS2 channels maintained a consistent tensile strain value across a large area. |
---|---|
ISSN: | 1936-0851 1936-086X |
DOI: | 10.1021/acsnano.3c10495 |