On estimating the scale parameter of the selected gamma population under the scale invariant squared error loss function
Let X 1 and X 2 be two independent random variables representing the populations Π 1 and Π 2 , respectively, and suppose that the random variable X i has a gamma distribution with shape parameter p, same for both the populations, and unknown scale parameter θ i , i = 1 , 2 . Define, M = 1 , if X 1 &...
Gespeichert in:
Veröffentlicht in: | Journal of computational and applied mathematics 2006-02, Vol.186 (1), p.268-282 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
X
1
and
X
2
be two independent random variables representing the populations
Π
1
and
Π
2
, respectively, and suppose that the random variable
X
i
has a gamma distribution with shape parameter
p, same for both the populations, and unknown scale parameter
θ
i
,
i
=
1
,
2
. Define,
M
=
1
, if
X
1
>
X
2
,
M
=
2
, if
X
2
>
X
1
and
J
=
3
-
M
. We consider the component wise estimation of random parameters
θ
M
and
θ
J
, under the scale invariant squared error loss functions
L
1
(
θ
̲
,
δ
1
)
=
(
δ
1
/
θ
M
-
1
)
2
and
L
2
(
θ
̲
,
δ
2
)
=
(
δ
2
/
θ
J
-
1
)
2
, respectively. Sufficient conditions for the inadmissibility of equivariant estimators of
θ
M
and
θ
J
are derived. As a consequence, various natural estimators are shown to be inadmissible and better estimators are obtained. |
---|---|
ISSN: | 0377-0427 1879-1778 |
DOI: | 10.1016/j.cam.2005.03.074 |