On estimating the scale parameter of the selected gamma population under the scale invariant squared error loss function

Let X 1 and X 2 be two independent random variables representing the populations Π 1 and Π 2 , respectively, and suppose that the random variable X i has a gamma distribution with shape parameter p, same for both the populations, and unknown scale parameter θ i , i = 1 , 2 . Define, M = 1 , if X 1 &...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2006-02, Vol.186 (1), p.268-282
Hauptverfasser: Misra, Neeraj, van der Meulen, Edward C., Vanden Branden, Karlien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let X 1 and X 2 be two independent random variables representing the populations Π 1 and Π 2 , respectively, and suppose that the random variable X i has a gamma distribution with shape parameter p, same for both the populations, and unknown scale parameter θ i , i = 1 , 2 . Define, M = 1 , if X 1 > X 2 , M = 2 , if X 2 > X 1 and J = 3 - M . We consider the component wise estimation of random parameters θ M and θ J , under the scale invariant squared error loss functions L 1 ( θ ̲ , δ 1 ) = ( δ 1 / θ M - 1 ) 2 and L 2 ( θ ̲ , δ 2 ) = ( δ 2 / θ J - 1 ) 2 , respectively. Sufficient conditions for the inadmissibility of equivariant estimators of θ M and θ J are derived. As a consequence, various natural estimators are shown to be inadmissible and better estimators are obtained.
ISSN:0377-0427
1879-1778
DOI:10.1016/j.cam.2005.03.074