Artifact suppression and improved signal-to-noise ratio by phase-locked multiplexed coherent imaging
Laser additive manufacturing (AM) promises direct metal 3D printing, but is held back by defects and process instabilities, giving rise to a need for in situ process monitoring. Inline coherent imaging (ICI) has proven effective for in situ, direct measurements of vapor depression depth and shape in...
Gespeichert in:
Veröffentlicht in: | Optics letters 2024-02, Vol.49 (3), p.738-741 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Laser additive manufacturing (AM) promises direct metal 3D printing, but is held back by defects and process instabilities, giving rise to a need for in situ process monitoring. Inline coherent imaging (ICI) has proven effective for in situ, direct measurements of vapor depression depth and shape in AM and laser welding but struggles to track turbulent interfaces due to poor coupling back into a single-mode fiber and the presence of artifacts. By z-domain multiplexing, we achieve phase-sensitive image consolidation, automatically attenuating autocorrelation artifacts and improving interface tracking rates by 58% in signal-starved applications. |
---|---|
ISSN: | 0146-9592 1539-4794 |
DOI: | 10.1364/OL.503939 |