Underwater optical signal detection system using diffuser-based lensless imaging

We propose a diffuser-based lensless underwater optical signal detection system. The system consists of a lensless one-dimensional (1D) camera array equipped with random phase modulators for signal acquisition and one-dimensional integral imaging convolutional neural network (1DInImCNN) for signal c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2024-01, Vol.32 (2), p.1489-1500
Hauptverfasser: Huang, Yinuo, Krishnan, Gokul, Goswami, Saurabh, Javidi, Bahram
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a diffuser-based lensless underwater optical signal detection system. The system consists of a lensless one-dimensional (1D) camera array equipped with random phase modulators for signal acquisition and one-dimensional integral imaging convolutional neural network (1DInImCNN) for signal classification. During the acquisition process, the encoded signal transmitted by a light-emitting diode passes through a turbid medium as well as partial occlusion. The 1D diffuser-based lensless camera array is used to capture the transmitted information. The captured pseudorandom patterns are then classified through the 1DInImCNN to output the desired signal. We compared our proposed underwater lensless optical signal detection system with an equivalent lens-based underwater optical signal detection system in terms of detection performance and computational cost. The results show that the former outperforms the latter. Moreover, we use dimensionality reduction on the lensless pattern and study their theoretical computational costs and detection performance. The results show that the detection performance of lensless systems does not suffer appreciably. This makes lensless systems a great candidate for low-cost compressive underwater optical imaging and signal detection.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.512438