Deep learning improves performance of topological bending waveguides

This study introduced design informatics using deep learning in a topological photonics system and applied it to a topological waveguide with a sharp bending structure to further reduce propagation loss. The sharp bend in the topological waveguide composed of two photonic crystals wherein dielectric...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2024-01, Vol.32 (2), p.1286-1294
Hauptverfasser: Sakamoto, Itsuki, Okada, Sho, Nishiyama, Nobuhiko, Hu, Xiao, Amemiya, Tomohiro
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study introduced design informatics using deep learning in a topological photonics system and applied it to a topological waveguide with a sharp bending structure to further reduce propagation loss. The sharp bend in the topological waveguide composed of two photonic crystals wherein dielectrics having C symmetry were arranged in triangle lattices of hexagons, and the designing of parameters individually for 6 × 6 unit cells near the bending region using deep learning resulted in an output improvement of 60% compared to the initial structure. The proposed structural design method has high versatility and applicability for various topological photonic structures.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.507479