Optical cryptosystem based on computational ghost imaging and nonlinear authentication

We propose an optical encryption system that combines computational ghost imaging (CGI) with image authentication to enhance security. In this scheme, Hadamard patterns are projected onto the secret images, while their reflected light intensities are captured using a bucket detector (BD). To further...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2024-01, Vol.32 (3), p.4242-4253
Hauptverfasser: Zhang, Lin, Wang, Xiaogang, Zhou, Qingming, Xue, Jidong, Xu, Bijun
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose an optical encryption system that combines computational ghost imaging (CGI) with image authentication to enhance security. In this scheme, Hadamard patterns are projected onto the secret images, while their reflected light intensities are captured using a bucket detector (BD). To further strengthen the security of the collected secret data, we encrypt it as a series of binary matrices serving as ciphertext. During the authentication key generation, these encoded binary matrices serve as illumination patterns in the CGI system for a non-secret image, which is used as a reference image for authentication. The data captured by the BD is then binarized to generate the authentication key. Upon successful authentication, the receiver obtains the decryption keys. This method achieves both data compression for secret images and enhanced security during information transmission. We validate the feasibility of this method through computer simulations and optical experiments.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.510356