Study of computational sensing using frequency-domain compression
The computational sensing and imaging technique has been extended from spatial domain to temporal domain for capturing fast light signals with a slow photodetector. However, temporal computational sensing based on random source/modulation has to require a lot of measurements to reconstruct an object...
Gespeichert in:
Veröffentlicht in: | Optics express 2024-01, Vol.32 (2), p.1677-1685 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The computational sensing and imaging technique has been extended from spatial domain to temporal domain for capturing fast light signals with a slow photodetector. However, temporal computational sensing based on random source/modulation has to require a lot of measurements to reconstruct an object signal with acceptable SNR. In this paper, we study the frequency-domain acquisition technique for capturing a nanosecond temporal object with ten Hertz detection bandwidth. The frequency-domain acquisition technique offers a SNR gain of N, where N denotes the point number of Fourier spectrum. Because of the compressibility of data and the orthogonality and completeness of Fourier basis, it enables the reconstruction based on sub-Nyquist sampling. Because the slow detection only has low temporal resolution capability, the frequency-domain acquisition technique could provide robustness and is immune to the temporal distortion in experiments. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.507968 |