The BONSAI (Brain and Optic Nerve Study with Artificial Intelligence) deep learning system can accurately identify pediatric papilledema on standard ocular fundus photographs
Pediatric papilledema often reflects an underlying severe neurologic disorder and may be difficult to appreciate, especially in young children. Ocular fundus photographs are easy to obtain even in young children and in nonophthalmology settings. The aim of our study was to ascertain whether an impro...
Gespeichert in:
Veröffentlicht in: | Journal of AAPOS 2024-02, Vol.28 (1), p.103803-103803, Article 103803 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Pediatric papilledema often reflects an underlying severe neurologic disorder and may be difficult to appreciate, especially in young children. Ocular fundus photographs are easy to obtain even in young children and in nonophthalmology settings. The aim of our study was to ascertain whether an improved deep-learning system (DLS), previously validated in adults, can accurately identify papilledema and other optic disk abnormalities in children.
The DLS was tested on mydriatic fundus photographs obtained in a multiethnic pediatric population ( |
---|---|
ISSN: | 1091-8531 1528-3933 |
DOI: | 10.1016/j.jaapos.2023.10.005 |