Magnetic Skyrmions above Room Temperature in a van der Waals Ferromagnet Fe3GaTe2

2D van der Waals (vdW) ferromagnetic crystals are a promising platform for innovative spintronic devices based on magnetic skyrmions, thanks to their high flexibility and atomic thickness stability. However, room‐temperature skyrmion‐hosting vdW materials are scarce, which poses a challenge for prac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-05, Vol.36 (18), p.e2311022-n/a
Hauptverfasser: Liu, Chen, Zhang, Senfu, Hao, Hongyuan, Algaidi, Hanin, Ma, Yinchang, Zhang, Xi‐Xiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 18
container_start_page e2311022
container_title Advanced materials (Weinheim)
container_volume 36
creator Liu, Chen
Zhang, Senfu
Hao, Hongyuan
Algaidi, Hanin
Ma, Yinchang
Zhang, Xi‐Xiang
description 2D van der Waals (vdW) ferromagnetic crystals are a promising platform for innovative spintronic devices based on magnetic skyrmions, thanks to their high flexibility and atomic thickness stability. However, room‐temperature skyrmion‐hosting vdW materials are scarce, which poses a challenge for practical applications. In this study, a chemical vapor transport (CVT) approach is employed to synthesize Fe3GaTe2 crystals and room‐temperature Néel skyrmions are observed in Fe3GaTe2 nanoflakes above 58 nm in thickness through in situ Lorentz transmission electron microscopy (L‐TEM). Upon an optimized field cooling procedure, zero‐field hexagonal skyrmion lattices are successfully generated in nanoflakes with an extended thickness range (30–180 nm). Significantly, these skyrmion lattices remain stable up to 355 K, setting a new record for the highest temperature at which skyrmions can be hosted. The research establishes Fe3GaTe2 as an emerging above‐room‐temperature skyrmion‐hosting vdW material, holding great promise for future spintronics. Room‐temperature Néel skyrmions in Fe3GaTe2 are observed through Lorentz transmission electron microscopy . Upon an optimized field cooling procedure, zero‐field skyrmion lattices are successfully generated in nanoflakes with an extended thickness range. Significantly, these skyrmion lattices remain stable up to 355 K, setting a new record for the highest temperature at which skyrmions can be hosted.
doi_str_mv 10.1002/adma.202311022
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2920571028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920571028</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2662-d1e115f8a1e51ff21305e8a66cc0c31f1433903a39d3dc2d983cce9d8cf557ef3</originalsourceid><addsrcrecordid>eNpdkMFLwzAUh4MoOKdXzwEvXjpfkiZrjmO6KWyIOvEYYvoqnW1T03ay_97OyQ6e3nv8Pn48PkIuGYwYAL-xaWlHHLhgDDg_IgMmOYti0PKYDEALGWkVJ6fkrGnWAKAVqAF5WtqPCtvc0ZfPbShzXzXUvvsN0mfvS7rCssZg2y4gzStq6cZWNMVA36wtGjrDEHz529DvYm5XyM_JSdZnePE3h-R1drea3keLx_nDdLKIaq4Uj1KGjMkssQwlyzLOBEhMrFLOgRMsY7EQGoQVOhWp46lOhHOo08RlUo4xE0Nyve-tg__qsGlNmTcOi8JW6LvGcM1BjnsVSY9e_UPXvgtV_50REGupuRrLntJ76jsvcGvqkJc2bA0Ds9NrdnrNQa-Z3C4nh0v8AIbdbxw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049592675</pqid></control><display><type>article</type><title>Magnetic Skyrmions above Room Temperature in a van der Waals Ferromagnet Fe3GaTe2</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liu, Chen ; Zhang, Senfu ; Hao, Hongyuan ; Algaidi, Hanin ; Ma, Yinchang ; Zhang, Xi‐Xiang</creator><creatorcontrib>Liu, Chen ; Zhang, Senfu ; Hao, Hongyuan ; Algaidi, Hanin ; Ma, Yinchang ; Zhang, Xi‐Xiang</creatorcontrib><description>2D van der Waals (vdW) ferromagnetic crystals are a promising platform for innovative spintronic devices based on magnetic skyrmions, thanks to their high flexibility and atomic thickness stability. However, room‐temperature skyrmion‐hosting vdW materials are scarce, which poses a challenge for practical applications. In this study, a chemical vapor transport (CVT) approach is employed to synthesize Fe3GaTe2 crystals and room‐temperature Néel skyrmions are observed in Fe3GaTe2 nanoflakes above 58 nm in thickness through in situ Lorentz transmission electron microscopy (L‐TEM). Upon an optimized field cooling procedure, zero‐field hexagonal skyrmion lattices are successfully generated in nanoflakes with an extended thickness range (30–180 nm). Significantly, these skyrmion lattices remain stable up to 355 K, setting a new record for the highest temperature at which skyrmions can be hosted. The research establishes Fe3GaTe2 as an emerging above‐room‐temperature skyrmion‐hosting vdW material, holding great promise for future spintronics. Room‐temperature Néel skyrmions in Fe3GaTe2 are observed through Lorentz transmission electron microscopy . Upon an optimized field cooling procedure, zero‐field skyrmion lattices are successfully generated in nanoflakes with an extended thickness range. Significantly, these skyrmion lattices remain stable up to 355 K, setting a new record for the highest temperature at which skyrmions can be hosted.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202311022</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>chemical vapor transport method ; Fe3GaTe2 ; Ferromagnetism ; Hypothetical particles ; Lattices ; Lorentz transmission electron microscopy ; magnetic skyrmions ; Particle theory ; Room temperature ; Spintronics ; Thickness ; van der Waals ferromagnet</subject><ispartof>Advanced materials (Weinheim), 2024-05, Vol.36 (18), p.e2311022-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1481-6484 ; 0000-0002-3478-6414</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202311022$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202311022$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Liu, Chen</creatorcontrib><creatorcontrib>Zhang, Senfu</creatorcontrib><creatorcontrib>Hao, Hongyuan</creatorcontrib><creatorcontrib>Algaidi, Hanin</creatorcontrib><creatorcontrib>Ma, Yinchang</creatorcontrib><creatorcontrib>Zhang, Xi‐Xiang</creatorcontrib><title>Magnetic Skyrmions above Room Temperature in a van der Waals Ferromagnet Fe3GaTe2</title><title>Advanced materials (Weinheim)</title><description>2D van der Waals (vdW) ferromagnetic crystals are a promising platform for innovative spintronic devices based on magnetic skyrmions, thanks to their high flexibility and atomic thickness stability. However, room‐temperature skyrmion‐hosting vdW materials are scarce, which poses a challenge for practical applications. In this study, a chemical vapor transport (CVT) approach is employed to synthesize Fe3GaTe2 crystals and room‐temperature Néel skyrmions are observed in Fe3GaTe2 nanoflakes above 58 nm in thickness through in situ Lorentz transmission electron microscopy (L‐TEM). Upon an optimized field cooling procedure, zero‐field hexagonal skyrmion lattices are successfully generated in nanoflakes with an extended thickness range (30–180 nm). Significantly, these skyrmion lattices remain stable up to 355 K, setting a new record for the highest temperature at which skyrmions can be hosted. The research establishes Fe3GaTe2 as an emerging above‐room‐temperature skyrmion‐hosting vdW material, holding great promise for future spintronics. Room‐temperature Néel skyrmions in Fe3GaTe2 are observed through Lorentz transmission electron microscopy . Upon an optimized field cooling procedure, zero‐field skyrmion lattices are successfully generated in nanoflakes with an extended thickness range. Significantly, these skyrmion lattices remain stable up to 355 K, setting a new record for the highest temperature at which skyrmions can be hosted.</description><subject>chemical vapor transport method</subject><subject>Fe3GaTe2</subject><subject>Ferromagnetism</subject><subject>Hypothetical particles</subject><subject>Lattices</subject><subject>Lorentz transmission electron microscopy</subject><subject>magnetic skyrmions</subject><subject>Particle theory</subject><subject>Room temperature</subject><subject>Spintronics</subject><subject>Thickness</subject><subject>van der Waals ferromagnet</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkMFLwzAUh4MoOKdXzwEvXjpfkiZrjmO6KWyIOvEYYvoqnW1T03ay_97OyQ6e3nv8Pn48PkIuGYwYAL-xaWlHHLhgDDg_IgMmOYti0PKYDEALGWkVJ6fkrGnWAKAVqAF5WtqPCtvc0ZfPbShzXzXUvvsN0mfvS7rCssZg2y4gzStq6cZWNMVA36wtGjrDEHz529DvYm5XyM_JSdZnePE3h-R1drea3keLx_nDdLKIaq4Uj1KGjMkssQwlyzLOBEhMrFLOgRMsY7EQGoQVOhWp46lOhHOo08RlUo4xE0Nyve-tg__qsGlNmTcOi8JW6LvGcM1BjnsVSY9e_UPXvgtV_50REGupuRrLntJ76jsvcGvqkJc2bA0Ds9NrdnrNQa-Z3C4nh0v8AIbdbxw</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Liu, Chen</creator><creator>Zhang, Senfu</creator><creator>Hao, Hongyuan</creator><creator>Algaidi, Hanin</creator><creator>Ma, Yinchang</creator><creator>Zhang, Xi‐Xiang</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1481-6484</orcidid><orcidid>https://orcid.org/0000-0002-3478-6414</orcidid></search><sort><creationdate>20240501</creationdate><title>Magnetic Skyrmions above Room Temperature in a van der Waals Ferromagnet Fe3GaTe2</title><author>Liu, Chen ; Zhang, Senfu ; Hao, Hongyuan ; Algaidi, Hanin ; Ma, Yinchang ; Zhang, Xi‐Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2662-d1e115f8a1e51ff21305e8a66cc0c31f1433903a39d3dc2d983cce9d8cf557ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>chemical vapor transport method</topic><topic>Fe3GaTe2</topic><topic>Ferromagnetism</topic><topic>Hypothetical particles</topic><topic>Lattices</topic><topic>Lorentz transmission electron microscopy</topic><topic>magnetic skyrmions</topic><topic>Particle theory</topic><topic>Room temperature</topic><topic>Spintronics</topic><topic>Thickness</topic><topic>van der Waals ferromagnet</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Chen</creatorcontrib><creatorcontrib>Zhang, Senfu</creatorcontrib><creatorcontrib>Hao, Hongyuan</creatorcontrib><creatorcontrib>Algaidi, Hanin</creatorcontrib><creatorcontrib>Ma, Yinchang</creatorcontrib><creatorcontrib>Zhang, Xi‐Xiang</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Chen</au><au>Zhang, Senfu</au><au>Hao, Hongyuan</au><au>Algaidi, Hanin</au><au>Ma, Yinchang</au><au>Zhang, Xi‐Xiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic Skyrmions above Room Temperature in a van der Waals Ferromagnet Fe3GaTe2</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2024-05-01</date><risdate>2024</risdate><volume>36</volume><issue>18</issue><spage>e2311022</spage><epage>n/a</epage><pages>e2311022-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>2D van der Waals (vdW) ferromagnetic crystals are a promising platform for innovative spintronic devices based on magnetic skyrmions, thanks to their high flexibility and atomic thickness stability. However, room‐temperature skyrmion‐hosting vdW materials are scarce, which poses a challenge for practical applications. In this study, a chemical vapor transport (CVT) approach is employed to synthesize Fe3GaTe2 crystals and room‐temperature Néel skyrmions are observed in Fe3GaTe2 nanoflakes above 58 nm in thickness through in situ Lorentz transmission electron microscopy (L‐TEM). Upon an optimized field cooling procedure, zero‐field hexagonal skyrmion lattices are successfully generated in nanoflakes with an extended thickness range (30–180 nm). Significantly, these skyrmion lattices remain stable up to 355 K, setting a new record for the highest temperature at which skyrmions can be hosted. The research establishes Fe3GaTe2 as an emerging above‐room‐temperature skyrmion‐hosting vdW material, holding great promise for future spintronics. Room‐temperature Néel skyrmions in Fe3GaTe2 are observed through Lorentz transmission electron microscopy . Upon an optimized field cooling procedure, zero‐field skyrmion lattices are successfully generated in nanoflakes with an extended thickness range. Significantly, these skyrmion lattices remain stable up to 355 K, setting a new record for the highest temperature at which skyrmions can be hosted.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202311022</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1481-6484</orcidid><orcidid>https://orcid.org/0000-0002-3478-6414</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-05, Vol.36 (18), p.e2311022-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2920571028
source Wiley Online Library Journals Frontfile Complete
subjects chemical vapor transport method
Fe3GaTe2
Ferromagnetism
Hypothetical particles
Lattices
Lorentz transmission electron microscopy
magnetic skyrmions
Particle theory
Room temperature
Spintronics
Thickness
van der Waals ferromagnet
title Magnetic Skyrmions above Room Temperature in a van der Waals Ferromagnet Fe3GaTe2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T03%3A50%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20Skyrmions%20above%20Room%20Temperature%20in%20a%20van%20der%20Waals%20Ferromagnet%20Fe3GaTe2&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Liu,%20Chen&rft.date=2024-05-01&rft.volume=36&rft.issue=18&rft.spage=e2311022&rft.epage=n/a&rft.pages=e2311022-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202311022&rft_dat=%3Cproquest_wiley%3E2920571028%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3049592675&rft_id=info:pmid/&rfr_iscdi=true