Magnetic Skyrmions above Room Temperature in a van der Waals Ferromagnet Fe3GaTe2
2D van der Waals (vdW) ferromagnetic crystals are a promising platform for innovative spintronic devices based on magnetic skyrmions, thanks to their high flexibility and atomic thickness stability. However, room‐temperature skyrmion‐hosting vdW materials are scarce, which poses a challenge for prac...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2024-05, Vol.36 (18), p.e2311022-n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 18 |
container_start_page | e2311022 |
container_title | Advanced materials (Weinheim) |
container_volume | 36 |
creator | Liu, Chen Zhang, Senfu Hao, Hongyuan Algaidi, Hanin Ma, Yinchang Zhang, Xi‐Xiang |
description | 2D van der Waals (vdW) ferromagnetic crystals are a promising platform for innovative spintronic devices based on magnetic skyrmions, thanks to their high flexibility and atomic thickness stability. However, room‐temperature skyrmion‐hosting vdW materials are scarce, which poses a challenge for practical applications. In this study, a chemical vapor transport (CVT) approach is employed to synthesize Fe3GaTe2 crystals and room‐temperature Néel skyrmions are observed in Fe3GaTe2 nanoflakes above 58 nm in thickness through in situ Lorentz transmission electron microscopy (L‐TEM). Upon an optimized field cooling procedure, zero‐field hexagonal skyrmion lattices are successfully generated in nanoflakes with an extended thickness range (30–180 nm). Significantly, these skyrmion lattices remain stable up to 355 K, setting a new record for the highest temperature at which skyrmions can be hosted. The research establishes Fe3GaTe2 as an emerging above‐room‐temperature skyrmion‐hosting vdW material, holding great promise for future spintronics.
Room‐temperature Néel skyrmions in Fe3GaTe2 are observed through Lorentz transmission electron microscopy . Upon an optimized field cooling procedure, zero‐field skyrmion lattices are successfully generated in nanoflakes with an extended thickness range. Significantly, these skyrmion lattices remain stable up to 355 K, setting a new record for the highest temperature at which skyrmions can be hosted. |
doi_str_mv | 10.1002/adma.202311022 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2920571028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920571028</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2662-d1e115f8a1e51ff21305e8a66cc0c31f1433903a39d3dc2d983cce9d8cf557ef3</originalsourceid><addsrcrecordid>eNpdkMFLwzAUh4MoOKdXzwEvXjpfkiZrjmO6KWyIOvEYYvoqnW1T03ay_97OyQ6e3nv8Pn48PkIuGYwYAL-xaWlHHLhgDDg_IgMmOYti0PKYDEALGWkVJ6fkrGnWAKAVqAF5WtqPCtvc0ZfPbShzXzXUvvsN0mfvS7rCssZg2y4gzStq6cZWNMVA36wtGjrDEHz529DvYm5XyM_JSdZnePE3h-R1drea3keLx_nDdLKIaq4Uj1KGjMkssQwlyzLOBEhMrFLOgRMsY7EQGoQVOhWp46lOhHOo08RlUo4xE0Nyve-tg__qsGlNmTcOi8JW6LvGcM1BjnsVSY9e_UPXvgtV_50REGupuRrLntJ76jsvcGvqkJc2bA0Ds9NrdnrNQa-Z3C4nh0v8AIbdbxw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049592675</pqid></control><display><type>article</type><title>Magnetic Skyrmions above Room Temperature in a van der Waals Ferromagnet Fe3GaTe2</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liu, Chen ; Zhang, Senfu ; Hao, Hongyuan ; Algaidi, Hanin ; Ma, Yinchang ; Zhang, Xi‐Xiang</creator><creatorcontrib>Liu, Chen ; Zhang, Senfu ; Hao, Hongyuan ; Algaidi, Hanin ; Ma, Yinchang ; Zhang, Xi‐Xiang</creatorcontrib><description>2D van der Waals (vdW) ferromagnetic crystals are a promising platform for innovative spintronic devices based on magnetic skyrmions, thanks to their high flexibility and atomic thickness stability. However, room‐temperature skyrmion‐hosting vdW materials are scarce, which poses a challenge for practical applications. In this study, a chemical vapor transport (CVT) approach is employed to synthesize Fe3GaTe2 crystals and room‐temperature Néel skyrmions are observed in Fe3GaTe2 nanoflakes above 58 nm in thickness through in situ Lorentz transmission electron microscopy (L‐TEM). Upon an optimized field cooling procedure, zero‐field hexagonal skyrmion lattices are successfully generated in nanoflakes with an extended thickness range (30–180 nm). Significantly, these skyrmion lattices remain stable up to 355 K, setting a new record for the highest temperature at which skyrmions can be hosted. The research establishes Fe3GaTe2 as an emerging above‐room‐temperature skyrmion‐hosting vdW material, holding great promise for future spintronics.
Room‐temperature Néel skyrmions in Fe3GaTe2 are observed through Lorentz transmission electron microscopy . Upon an optimized field cooling procedure, zero‐field skyrmion lattices are successfully generated in nanoflakes with an extended thickness range. Significantly, these skyrmion lattices remain stable up to 355 K, setting a new record for the highest temperature at which skyrmions can be hosted.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202311022</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>chemical vapor transport method ; Fe3GaTe2 ; Ferromagnetism ; Hypothetical particles ; Lattices ; Lorentz transmission electron microscopy ; magnetic skyrmions ; Particle theory ; Room temperature ; Spintronics ; Thickness ; van der Waals ferromagnet</subject><ispartof>Advanced materials (Weinheim), 2024-05, Vol.36 (18), p.e2311022-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1481-6484 ; 0000-0002-3478-6414</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202311022$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202311022$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Liu, Chen</creatorcontrib><creatorcontrib>Zhang, Senfu</creatorcontrib><creatorcontrib>Hao, Hongyuan</creatorcontrib><creatorcontrib>Algaidi, Hanin</creatorcontrib><creatorcontrib>Ma, Yinchang</creatorcontrib><creatorcontrib>Zhang, Xi‐Xiang</creatorcontrib><title>Magnetic Skyrmions above Room Temperature in a van der Waals Ferromagnet Fe3GaTe2</title><title>Advanced materials (Weinheim)</title><description>2D van der Waals (vdW) ferromagnetic crystals are a promising platform for innovative spintronic devices based on magnetic skyrmions, thanks to their high flexibility and atomic thickness stability. However, room‐temperature skyrmion‐hosting vdW materials are scarce, which poses a challenge for practical applications. In this study, a chemical vapor transport (CVT) approach is employed to synthesize Fe3GaTe2 crystals and room‐temperature Néel skyrmions are observed in Fe3GaTe2 nanoflakes above 58 nm in thickness through in situ Lorentz transmission electron microscopy (L‐TEM). Upon an optimized field cooling procedure, zero‐field hexagonal skyrmion lattices are successfully generated in nanoflakes with an extended thickness range (30–180 nm). Significantly, these skyrmion lattices remain stable up to 355 K, setting a new record for the highest temperature at which skyrmions can be hosted. The research establishes Fe3GaTe2 as an emerging above‐room‐temperature skyrmion‐hosting vdW material, holding great promise for future spintronics.
Room‐temperature Néel skyrmions in Fe3GaTe2 are observed through Lorentz transmission electron microscopy . Upon an optimized field cooling procedure, zero‐field skyrmion lattices are successfully generated in nanoflakes with an extended thickness range. Significantly, these skyrmion lattices remain stable up to 355 K, setting a new record for the highest temperature at which skyrmions can be hosted.</description><subject>chemical vapor transport method</subject><subject>Fe3GaTe2</subject><subject>Ferromagnetism</subject><subject>Hypothetical particles</subject><subject>Lattices</subject><subject>Lorentz transmission electron microscopy</subject><subject>magnetic skyrmions</subject><subject>Particle theory</subject><subject>Room temperature</subject><subject>Spintronics</subject><subject>Thickness</subject><subject>van der Waals ferromagnet</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkMFLwzAUh4MoOKdXzwEvXjpfkiZrjmO6KWyIOvEYYvoqnW1T03ay_97OyQ6e3nv8Pn48PkIuGYwYAL-xaWlHHLhgDDg_IgMmOYti0PKYDEALGWkVJ6fkrGnWAKAVqAF5WtqPCtvc0ZfPbShzXzXUvvsN0mfvS7rCssZg2y4gzStq6cZWNMVA36wtGjrDEHz529DvYm5XyM_JSdZnePE3h-R1drea3keLx_nDdLKIaq4Uj1KGjMkssQwlyzLOBEhMrFLOgRMsY7EQGoQVOhWp46lOhHOo08RlUo4xE0Nyve-tg__qsGlNmTcOi8JW6LvGcM1BjnsVSY9e_UPXvgtV_50REGupuRrLntJ76jsvcGvqkJc2bA0Ds9NrdnrNQa-Z3C4nh0v8AIbdbxw</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Liu, Chen</creator><creator>Zhang, Senfu</creator><creator>Hao, Hongyuan</creator><creator>Algaidi, Hanin</creator><creator>Ma, Yinchang</creator><creator>Zhang, Xi‐Xiang</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1481-6484</orcidid><orcidid>https://orcid.org/0000-0002-3478-6414</orcidid></search><sort><creationdate>20240501</creationdate><title>Magnetic Skyrmions above Room Temperature in a van der Waals Ferromagnet Fe3GaTe2</title><author>Liu, Chen ; Zhang, Senfu ; Hao, Hongyuan ; Algaidi, Hanin ; Ma, Yinchang ; Zhang, Xi‐Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2662-d1e115f8a1e51ff21305e8a66cc0c31f1433903a39d3dc2d983cce9d8cf557ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>chemical vapor transport method</topic><topic>Fe3GaTe2</topic><topic>Ferromagnetism</topic><topic>Hypothetical particles</topic><topic>Lattices</topic><topic>Lorentz transmission electron microscopy</topic><topic>magnetic skyrmions</topic><topic>Particle theory</topic><topic>Room temperature</topic><topic>Spintronics</topic><topic>Thickness</topic><topic>van der Waals ferromagnet</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Chen</creatorcontrib><creatorcontrib>Zhang, Senfu</creatorcontrib><creatorcontrib>Hao, Hongyuan</creatorcontrib><creatorcontrib>Algaidi, Hanin</creatorcontrib><creatorcontrib>Ma, Yinchang</creatorcontrib><creatorcontrib>Zhang, Xi‐Xiang</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Chen</au><au>Zhang, Senfu</au><au>Hao, Hongyuan</au><au>Algaidi, Hanin</au><au>Ma, Yinchang</au><au>Zhang, Xi‐Xiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic Skyrmions above Room Temperature in a van der Waals Ferromagnet Fe3GaTe2</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2024-05-01</date><risdate>2024</risdate><volume>36</volume><issue>18</issue><spage>e2311022</spage><epage>n/a</epage><pages>e2311022-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>2D van der Waals (vdW) ferromagnetic crystals are a promising platform for innovative spintronic devices based on magnetic skyrmions, thanks to their high flexibility and atomic thickness stability. However, room‐temperature skyrmion‐hosting vdW materials are scarce, which poses a challenge for practical applications. In this study, a chemical vapor transport (CVT) approach is employed to synthesize Fe3GaTe2 crystals and room‐temperature Néel skyrmions are observed in Fe3GaTe2 nanoflakes above 58 nm in thickness through in situ Lorentz transmission electron microscopy (L‐TEM). Upon an optimized field cooling procedure, zero‐field hexagonal skyrmion lattices are successfully generated in nanoflakes with an extended thickness range (30–180 nm). Significantly, these skyrmion lattices remain stable up to 355 K, setting a new record for the highest temperature at which skyrmions can be hosted. The research establishes Fe3GaTe2 as an emerging above‐room‐temperature skyrmion‐hosting vdW material, holding great promise for future spintronics.
Room‐temperature Néel skyrmions in Fe3GaTe2 are observed through Lorentz transmission electron microscopy . Upon an optimized field cooling procedure, zero‐field skyrmion lattices are successfully generated in nanoflakes with an extended thickness range. Significantly, these skyrmion lattices remain stable up to 355 K, setting a new record for the highest temperature at which skyrmions can be hosted.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202311022</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1481-6484</orcidid><orcidid>https://orcid.org/0000-0002-3478-6414</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2024-05, Vol.36 (18), p.e2311022-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2920571028 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | chemical vapor transport method Fe3GaTe2 Ferromagnetism Hypothetical particles Lattices Lorentz transmission electron microscopy magnetic skyrmions Particle theory Room temperature Spintronics Thickness van der Waals ferromagnet |
title | Magnetic Skyrmions above Room Temperature in a van der Waals Ferromagnet Fe3GaTe2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T03%3A50%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20Skyrmions%20above%20Room%20Temperature%20in%20a%20van%20der%20Waals%20Ferromagnet%20Fe3GaTe2&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Liu,%20Chen&rft.date=2024-05-01&rft.volume=36&rft.issue=18&rft.spage=e2311022&rft.epage=n/a&rft.pages=e2311022-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202311022&rft_dat=%3Cproquest_wiley%3E2920571028%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3049592675&rft_id=info:pmid/&rfr_iscdi=true |