Magnetic Skyrmions above Room Temperature in a van der Waals Ferromagnet Fe3GaTe2

2D van der Waals (vdW) ferromagnetic crystals are a promising platform for innovative spintronic devices based on magnetic skyrmions, thanks to their high flexibility and atomic thickness stability. However, room‐temperature skyrmion‐hosting vdW materials are scarce, which poses a challenge for prac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-05, Vol.36 (18), p.e2311022-n/a
Hauptverfasser: Liu, Chen, Zhang, Senfu, Hao, Hongyuan, Algaidi, Hanin, Ma, Yinchang, Zhang, Xi‐Xiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:2D van der Waals (vdW) ferromagnetic crystals are a promising platform for innovative spintronic devices based on magnetic skyrmions, thanks to their high flexibility and atomic thickness stability. However, room‐temperature skyrmion‐hosting vdW materials are scarce, which poses a challenge for practical applications. In this study, a chemical vapor transport (CVT) approach is employed to synthesize Fe3GaTe2 crystals and room‐temperature Néel skyrmions are observed in Fe3GaTe2 nanoflakes above 58 nm in thickness through in situ Lorentz transmission electron microscopy (L‐TEM). Upon an optimized field cooling procedure, zero‐field hexagonal skyrmion lattices are successfully generated in nanoflakes with an extended thickness range (30–180 nm). Significantly, these skyrmion lattices remain stable up to 355 K, setting a new record for the highest temperature at which skyrmions can be hosted. The research establishes Fe3GaTe2 as an emerging above‐room‐temperature skyrmion‐hosting vdW material, holding great promise for future spintronics. Room‐temperature Néel skyrmions in Fe3GaTe2 are observed through Lorentz transmission electron microscopy . Upon an optimized field cooling procedure, zero‐field skyrmion lattices are successfully generated in nanoflakes with an extended thickness range. Significantly, these skyrmion lattices remain stable up to 355 K, setting a new record for the highest temperature at which skyrmions can be hosted.
ISSN:0935-9648
1521-4095
DOI:10.1002/adma.202311022