Eu(OTf)3‐Catalyzed Formal Dipolar [4π+2σ] Cycloaddition of Bicyclo‐[1.1.0]butanes with Nitrones: Access to Polysubstituted 2‐Oxa‐3‐azabicyclo[3.1.1]heptanes

Herein, we have synthesized multifunctionalized 2‐oxa‐3‐azabicyclo[3.1.1]heptanes, which are considered potential bioisosteres for meta‐substituted arenes, through Eu(OTf)3‐catalyzed formal dipolar [4π+2σ] cycloaddition of bicyclo[1.1.0]butanes with nitrones. This methodology represents the initial...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2024-03, Vol.63 (13), p.e202318476-n/a
Hauptverfasser: Zhang, Jian, Su, Jia‐Yi, Zheng, Hanliang, Li, Hao, Deng, Wei‐Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Herein, we have synthesized multifunctionalized 2‐oxa‐3‐azabicyclo[3.1.1]heptanes, which are considered potential bioisosteres for meta‐substituted arenes, through Eu(OTf)3‐catalyzed formal dipolar [4π+2σ] cycloaddition of bicyclo[1.1.0]butanes with nitrones. This methodology represents the initial instance of fabricating bicyclo[3.1.1]heptanes adorned with multiple heteroatoms. The protocol exhibits both mild reaction conditions and a good tolerance for various functional groups. Computational density functional theory calculations support that the reaction mechanism likely involves a nucleophilic addition of nitrones to bicyclo[1.1.0]butanes, succeeded by an intramolecular cyclization. The synthetic utility of this novel protocol has been demonstrated in the concise synthesis of the analogue of Rupatadine. Rapid access of diverse polysubstituted 2‐oxa‐3‐azabicyclo[3.1.1]heptanes, which were not readily accessible by known methods, has been realized through Eu(OTf)3‐catalyzed formal dipolar [4π+2σ] cycloaddition of bicyclo[1.1.0]butanes with easily accessible nitrones.
ISSN:1433-7851
1521-3773
DOI:10.1002/anie.202318476