Predicting the Geometry of Core–Shell Structures: How a Shape Changes with Constant Added Thickness

The core–shell assembly motif is ubiquitous in chemistry. While the most obvious examples are core/shell-type nanoparticles, many other examples exist. The shape of the core/shell constructs is poorly understood, making it impossible to separate chemical effects from geometric effects. Here, we crea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2024-02, Vol.128 (5), p.1317-1324
Hauptverfasser: Gale, Christopher D., Levinger, Nancy E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The core–shell assembly motif is ubiquitous in chemistry. While the most obvious examples are core/shell-type nanoparticles, many other examples exist. The shape of the core/shell constructs is poorly understood, making it impossible to separate chemical effects from geometric effects. Here, we create a model for the core/shell construct and develop proof for how the eccentricity is expected to change as a function of the shell. We find that the addition of a constant thickness shell always creates a relatively more spherical shape for all shapes covered by our model unless the shape is already spherical or has some underlying radial symmetry. We apply this work to simulated AOT reverse micelles and demonstrate that it is remarkably successful at explaining the observed shapes of the chemical systems. We identify the three specific cases where the model breaks down and how this impacts eccentricity.
ISSN:1520-6106
1520-5207
DOI:10.1021/acs.jpcb.3c07652