Adapting TPV for Use in a Standard Home Heating Furnace
A novel TPV configuration will be presented that can fit into a standard home furnace cabinet. This system incorporates an externally faceted glass cylinder with a dichroic filter deposited on its outer surface and a GaSb IR cell array bonded to the outer surface on top of the filter. This cylindric...
Gespeichert in:
Veröffentlicht in: | Thermophotovoltaic Generation of Electricity (AIP Conference Proceedings Volume 890) 2007-01, Vol.890, p.273-279 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A novel TPV configuration will be presented that can fit into a standard home furnace cabinet. This system incorporates an externally faceted glass cylinder with a dichroic filter deposited on its outer surface and a GaSb IR cell array bonded to the outer surface on top of the filter. This cylindrical array is then surrounded with an envelope containing a low boiling point liquid for evaporative cooling. The liquid is in direct contact with the backside of the cell array. An air-cooled condenser is then mounted above the photovoltaic converter array. Evaporative cooling potentially allows a heat removal rate of 20 W/cm2. Additional novel features of this design are described. The goal is to design a cost-effective retrofit forced-air warm air furnace that can work either as a self-powered furnace or as a Combined Heat and Power appliance. In order to achieve low cost, the design point for the GaSb cell electric power density is 2.5 W/cm2. |
---|---|
ISSN: | 0094-243X |
DOI: | 10.1063/1.2711745 |