Gamma-delta T cells suppress microbial metabolites that activate striatal neurons and induce repetitive/compulsive behavior in mice
•γδ T cells regulate the gut microbiota.•In the absence of γδ T cells, mice develop a microbial dysbiosis with the growth of microbes involved in the metabolism of aromatic amino acids.•The gut microbiota from γδ T cell deficient mice produces high amounts of hippurate.•Hippurate reaches the brain w...
Gespeichert in:
Veröffentlicht in: | Brain, behavior, and immunity behavior, and immunity, 2024-03, Vol.117, p.242-254 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 254 |
---|---|
container_issue | |
container_start_page | 242 |
container_title | Brain, behavior, and immunity |
container_volume | 117 |
creator | Cox, Laura M. Tatematsu, Bruna K. Guo, Lydia LeServe, Danielle S. Mayrink, Julia Oliveira, Marilia G. Donnelly, Dustin Fonseca, Roberta C. Lemos, Luisa Lanser, Toby B. Rosa, Ana C. Lopes, Juliana R. Schwerdtfeger, Luke A. Ribeiro, Gabriela F.C. Lobo, Eduardo L.C. Moreira, Thais G. Oliveira, Andre G. Weiner, Howard L. Rezende, Rafael M. |
description | •γδ T cells regulate the gut microbiota.•In the absence of γδ T cells, mice develop a microbial dysbiosis with the growth of microbes involved in the metabolism of aromatic amino acids.•The gut microbiota from γδ T cell deficient mice produces high amounts of hippurate.•Hippurate reaches the brain where it activates striatal neurons expressing the dopamine type 1 receptor (D1R).•Overactivation of striatal D1R + neurons lead to repetitive/compulsive behavior.
Intestinal γδ T cells play an important role in shaping the gut microbiota, which is critical not only for maintaining intestinal homeostasis but also for controlling brain function and behavior. Here, we found that mice deficient for γδ T cells (γδ-/-) developed an abnormal pattern of repetitive/compulsive (R/C) behavior, which was dependent on the gut microbiota. Colonization of WT mice with γδ-/- microbiota induced R/C behavior whereas colonization of γδ-/- mice with WT microbiota abolished the R/C behavior. Moreover, γδ-/- mice had elevated levels of the microbial metabolite 3-phenylpropanoic acid in their cecum, which is a precursor to hippurate (HIP), a metabolite we found to be elevated in the CSF. HIP reaches the striatum and activates dopamine type 1 (D1R)-expressing neurons, leading to R/C behavior. Altogether, these data suggest that intestinal γδ T cells shape the gut microbiota and their metabolites and prevent dysfunctions of the striatum associated with behavior modulation. |
doi_str_mv | 10.1016/j.bbi.2024.01.214 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2919747147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0889159124002265</els_id><sourcerecordid>2919747147</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-8654d26f519e0758ceea03c947a4192fda132ce6939cbffd9fdc7ac5aac0bc7c3</originalsourceid><addsrcrecordid>eNp9kD1vFDEQhi0EIkfgB9AglzS78Xg_LSoUhYAUiSbU1ux4VvFpv7C9J1Hzx_HpAiXVTPHMO3ofId6DKkFBe3Msh8GXWum6VFBqqF-IAyijCg2VeSkOqu9NAY2BK_EmxqNSqqmgfy2uql730HZwEL_vcZ6xcDwllI-SeJqijPu2BY5Rzp7COnic5MwJh3XyiaNMT5gkUvInTCxjCh5TRhbew7pEiYuTfnE7sQy8cfIZ5Bta522fYl7lwE948mvI1PkDvxWvRpwiv3ue1-LHl7vH26_Fw_f7b7efHwqqVJOKvm1qp9uxAcOqa3piRlWRqTuswejRIVSauDWVoWEcnRkddUgNIqmBOqquxcdL7hbWnzvHZGcfz41x4XWPVhswXd1B3WUULmjuH2Pg0W7Bzxh-WVD27N4ebXZvz-6tApvd55sPz_H7MLP7d_FXdgY-XQDOJU-eg43keSF2PjAl61b_n_g_UXCYXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919747147</pqid></control><display><type>article</type><title>Gamma-delta T cells suppress microbial metabolites that activate striatal neurons and induce repetitive/compulsive behavior in mice</title><source>Elsevier ScienceDirect Journals</source><creator>Cox, Laura M. ; Tatematsu, Bruna K. ; Guo, Lydia ; LeServe, Danielle S. ; Mayrink, Julia ; Oliveira, Marilia G. ; Donnelly, Dustin ; Fonseca, Roberta C. ; Lemos, Luisa ; Lanser, Toby B. ; Rosa, Ana C. ; Lopes, Juliana R. ; Schwerdtfeger, Luke A. ; Ribeiro, Gabriela F.C. ; Lobo, Eduardo L.C. ; Moreira, Thais G. ; Oliveira, Andre G. ; Weiner, Howard L. ; Rezende, Rafael M.</creator><creatorcontrib>Cox, Laura M. ; Tatematsu, Bruna K. ; Guo, Lydia ; LeServe, Danielle S. ; Mayrink, Julia ; Oliveira, Marilia G. ; Donnelly, Dustin ; Fonseca, Roberta C. ; Lemos, Luisa ; Lanser, Toby B. ; Rosa, Ana C. ; Lopes, Juliana R. ; Schwerdtfeger, Luke A. ; Ribeiro, Gabriela F.C. ; Lobo, Eduardo L.C. ; Moreira, Thais G. ; Oliveira, Andre G. ; Weiner, Howard L. ; Rezende, Rafael M.</creatorcontrib><description>•γδ T cells regulate the gut microbiota.•In the absence of γδ T cells, mice develop a microbial dysbiosis with the growth of microbes involved in the metabolism of aromatic amino acids.•The gut microbiota from γδ T cell deficient mice produces high amounts of hippurate.•Hippurate reaches the brain where it activates striatal neurons expressing the dopamine type 1 receptor (D1R).•Overactivation of striatal D1R + neurons lead to repetitive/compulsive behavior.
Intestinal γδ T cells play an important role in shaping the gut microbiota, which is critical not only for maintaining intestinal homeostasis but also for controlling brain function and behavior. Here, we found that mice deficient for γδ T cells (γδ-/-) developed an abnormal pattern of repetitive/compulsive (R/C) behavior, which was dependent on the gut microbiota. Colonization of WT mice with γδ-/- microbiota induced R/C behavior whereas colonization of γδ-/- mice with WT microbiota abolished the R/C behavior. Moreover, γδ-/- mice had elevated levels of the microbial metabolite 3-phenylpropanoic acid in their cecum, which is a precursor to hippurate (HIP), a metabolite we found to be elevated in the CSF. HIP reaches the striatum and activates dopamine type 1 (D1R)-expressing neurons, leading to R/C behavior. Altogether, these data suggest that intestinal γδ T cells shape the gut microbiota and their metabolites and prevent dysfunctions of the striatum associated with behavior modulation.</description><identifier>ISSN: 0889-1591</identifier><identifier>EISSN: 1090-2139</identifier><identifier>DOI: 10.1016/j.bbi.2024.01.214</identifier><identifier>PMID: 38281671</identifier><language>eng</language><publisher>Netherlands: Elsevier Inc</publisher><subject>Behavior ; D1R-expressing neurons ; Gut microbiota ; Striatum ; γδ T cells</subject><ispartof>Brain, behavior, and immunity, 2024-03, Vol.117, p.242-254</ispartof><rights>2024 Elsevier Inc.</rights><rights>Copyright © 2024. Published by Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c305t-8654d26f519e0758ceea03c947a4192fda132ce6939cbffd9fdc7ac5aac0bc7c3</cites><orcidid>0000-0003-3998-8012</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0889159124002265$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38281671$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cox, Laura M.</creatorcontrib><creatorcontrib>Tatematsu, Bruna K.</creatorcontrib><creatorcontrib>Guo, Lydia</creatorcontrib><creatorcontrib>LeServe, Danielle S.</creatorcontrib><creatorcontrib>Mayrink, Julia</creatorcontrib><creatorcontrib>Oliveira, Marilia G.</creatorcontrib><creatorcontrib>Donnelly, Dustin</creatorcontrib><creatorcontrib>Fonseca, Roberta C.</creatorcontrib><creatorcontrib>Lemos, Luisa</creatorcontrib><creatorcontrib>Lanser, Toby B.</creatorcontrib><creatorcontrib>Rosa, Ana C.</creatorcontrib><creatorcontrib>Lopes, Juliana R.</creatorcontrib><creatorcontrib>Schwerdtfeger, Luke A.</creatorcontrib><creatorcontrib>Ribeiro, Gabriela F.C.</creatorcontrib><creatorcontrib>Lobo, Eduardo L.C.</creatorcontrib><creatorcontrib>Moreira, Thais G.</creatorcontrib><creatorcontrib>Oliveira, Andre G.</creatorcontrib><creatorcontrib>Weiner, Howard L.</creatorcontrib><creatorcontrib>Rezende, Rafael M.</creatorcontrib><title>Gamma-delta T cells suppress microbial metabolites that activate striatal neurons and induce repetitive/compulsive behavior in mice</title><title>Brain, behavior, and immunity</title><addtitle>Brain Behav Immun</addtitle><description>•γδ T cells regulate the gut microbiota.•In the absence of γδ T cells, mice develop a microbial dysbiosis with the growth of microbes involved in the metabolism of aromatic amino acids.•The gut microbiota from γδ T cell deficient mice produces high amounts of hippurate.•Hippurate reaches the brain where it activates striatal neurons expressing the dopamine type 1 receptor (D1R).•Overactivation of striatal D1R + neurons lead to repetitive/compulsive behavior.
Intestinal γδ T cells play an important role in shaping the gut microbiota, which is critical not only for maintaining intestinal homeostasis but also for controlling brain function and behavior. Here, we found that mice deficient for γδ T cells (γδ-/-) developed an abnormal pattern of repetitive/compulsive (R/C) behavior, which was dependent on the gut microbiota. Colonization of WT mice with γδ-/- microbiota induced R/C behavior whereas colonization of γδ-/- mice with WT microbiota abolished the R/C behavior. Moreover, γδ-/- mice had elevated levels of the microbial metabolite 3-phenylpropanoic acid in their cecum, which is a precursor to hippurate (HIP), a metabolite we found to be elevated in the CSF. HIP reaches the striatum and activates dopamine type 1 (D1R)-expressing neurons, leading to R/C behavior. Altogether, these data suggest that intestinal γδ T cells shape the gut microbiota and their metabolites and prevent dysfunctions of the striatum associated with behavior modulation.</description><subject>Behavior</subject><subject>D1R-expressing neurons</subject><subject>Gut microbiota</subject><subject>Striatum</subject><subject>γδ T cells</subject><issn>0889-1591</issn><issn>1090-2139</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kD1vFDEQhi0EIkfgB9AglzS78Xg_LSoUhYAUiSbU1ux4VvFpv7C9J1Hzx_HpAiXVTPHMO3ofId6DKkFBe3Msh8GXWum6VFBqqF-IAyijCg2VeSkOqu9NAY2BK_EmxqNSqqmgfy2uql730HZwEL_vcZ6xcDwllI-SeJqijPu2BY5Rzp7COnic5MwJh3XyiaNMT5gkUvInTCxjCh5TRhbew7pEiYuTfnE7sQy8cfIZ5Bta522fYl7lwE948mvI1PkDvxWvRpwiv3ue1-LHl7vH26_Fw_f7b7efHwqqVJOKvm1qp9uxAcOqa3piRlWRqTuswejRIVSauDWVoWEcnRkddUgNIqmBOqquxcdL7hbWnzvHZGcfz41x4XWPVhswXd1B3WUULmjuH2Pg0W7Bzxh-WVD27N4ebXZvz-6tApvd55sPz_H7MLP7d_FXdgY-XQDOJU-eg43keSF2PjAl61b_n_g_UXCYXA</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Cox, Laura M.</creator><creator>Tatematsu, Bruna K.</creator><creator>Guo, Lydia</creator><creator>LeServe, Danielle S.</creator><creator>Mayrink, Julia</creator><creator>Oliveira, Marilia G.</creator><creator>Donnelly, Dustin</creator><creator>Fonseca, Roberta C.</creator><creator>Lemos, Luisa</creator><creator>Lanser, Toby B.</creator><creator>Rosa, Ana C.</creator><creator>Lopes, Juliana R.</creator><creator>Schwerdtfeger, Luke A.</creator><creator>Ribeiro, Gabriela F.C.</creator><creator>Lobo, Eduardo L.C.</creator><creator>Moreira, Thais G.</creator><creator>Oliveira, Andre G.</creator><creator>Weiner, Howard L.</creator><creator>Rezende, Rafael M.</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3998-8012</orcidid></search><sort><creationdate>20240301</creationdate><title>Gamma-delta T cells suppress microbial metabolites that activate striatal neurons and induce repetitive/compulsive behavior in mice</title><author>Cox, Laura M. ; Tatematsu, Bruna K. ; Guo, Lydia ; LeServe, Danielle S. ; Mayrink, Julia ; Oliveira, Marilia G. ; Donnelly, Dustin ; Fonseca, Roberta C. ; Lemos, Luisa ; Lanser, Toby B. ; Rosa, Ana C. ; Lopes, Juliana R. ; Schwerdtfeger, Luke A. ; Ribeiro, Gabriela F.C. ; Lobo, Eduardo L.C. ; Moreira, Thais G. ; Oliveira, Andre G. ; Weiner, Howard L. ; Rezende, Rafael M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-8654d26f519e0758ceea03c947a4192fda132ce6939cbffd9fdc7ac5aac0bc7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Behavior</topic><topic>D1R-expressing neurons</topic><topic>Gut microbiota</topic><topic>Striatum</topic><topic>γδ T cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cox, Laura M.</creatorcontrib><creatorcontrib>Tatematsu, Bruna K.</creatorcontrib><creatorcontrib>Guo, Lydia</creatorcontrib><creatorcontrib>LeServe, Danielle S.</creatorcontrib><creatorcontrib>Mayrink, Julia</creatorcontrib><creatorcontrib>Oliveira, Marilia G.</creatorcontrib><creatorcontrib>Donnelly, Dustin</creatorcontrib><creatorcontrib>Fonseca, Roberta C.</creatorcontrib><creatorcontrib>Lemos, Luisa</creatorcontrib><creatorcontrib>Lanser, Toby B.</creatorcontrib><creatorcontrib>Rosa, Ana C.</creatorcontrib><creatorcontrib>Lopes, Juliana R.</creatorcontrib><creatorcontrib>Schwerdtfeger, Luke A.</creatorcontrib><creatorcontrib>Ribeiro, Gabriela F.C.</creatorcontrib><creatorcontrib>Lobo, Eduardo L.C.</creatorcontrib><creatorcontrib>Moreira, Thais G.</creatorcontrib><creatorcontrib>Oliveira, Andre G.</creatorcontrib><creatorcontrib>Weiner, Howard L.</creatorcontrib><creatorcontrib>Rezende, Rafael M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Brain, behavior, and immunity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cox, Laura M.</au><au>Tatematsu, Bruna K.</au><au>Guo, Lydia</au><au>LeServe, Danielle S.</au><au>Mayrink, Julia</au><au>Oliveira, Marilia G.</au><au>Donnelly, Dustin</au><au>Fonseca, Roberta C.</au><au>Lemos, Luisa</au><au>Lanser, Toby B.</au><au>Rosa, Ana C.</au><au>Lopes, Juliana R.</au><au>Schwerdtfeger, Luke A.</au><au>Ribeiro, Gabriela F.C.</au><au>Lobo, Eduardo L.C.</au><au>Moreira, Thais G.</au><au>Oliveira, Andre G.</au><au>Weiner, Howard L.</au><au>Rezende, Rafael M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gamma-delta T cells suppress microbial metabolites that activate striatal neurons and induce repetitive/compulsive behavior in mice</atitle><jtitle>Brain, behavior, and immunity</jtitle><addtitle>Brain Behav Immun</addtitle><date>2024-03-01</date><risdate>2024</risdate><volume>117</volume><spage>242</spage><epage>254</epage><pages>242-254</pages><issn>0889-1591</issn><eissn>1090-2139</eissn><abstract>•γδ T cells regulate the gut microbiota.•In the absence of γδ T cells, mice develop a microbial dysbiosis with the growth of microbes involved in the metabolism of aromatic amino acids.•The gut microbiota from γδ T cell deficient mice produces high amounts of hippurate.•Hippurate reaches the brain where it activates striatal neurons expressing the dopamine type 1 receptor (D1R).•Overactivation of striatal D1R + neurons lead to repetitive/compulsive behavior.
Intestinal γδ T cells play an important role in shaping the gut microbiota, which is critical not only for maintaining intestinal homeostasis but also for controlling brain function and behavior. Here, we found that mice deficient for γδ T cells (γδ-/-) developed an abnormal pattern of repetitive/compulsive (R/C) behavior, which was dependent on the gut microbiota. Colonization of WT mice with γδ-/- microbiota induced R/C behavior whereas colonization of γδ-/- mice with WT microbiota abolished the R/C behavior. Moreover, γδ-/- mice had elevated levels of the microbial metabolite 3-phenylpropanoic acid in their cecum, which is a precursor to hippurate (HIP), a metabolite we found to be elevated in the CSF. HIP reaches the striatum and activates dopamine type 1 (D1R)-expressing neurons, leading to R/C behavior. Altogether, these data suggest that intestinal γδ T cells shape the gut microbiota and their metabolites and prevent dysfunctions of the striatum associated with behavior modulation.</abstract><cop>Netherlands</cop><pub>Elsevier Inc</pub><pmid>38281671</pmid><doi>10.1016/j.bbi.2024.01.214</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3998-8012</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0889-1591 |
ispartof | Brain, behavior, and immunity, 2024-03, Vol.117, p.242-254 |
issn | 0889-1591 1090-2139 |
language | eng |
recordid | cdi_proquest_miscellaneous_2919747147 |
source | Elsevier ScienceDirect Journals |
subjects | Behavior D1R-expressing neurons Gut microbiota Striatum γδ T cells |
title | Gamma-delta T cells suppress microbial metabolites that activate striatal neurons and induce repetitive/compulsive behavior in mice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A43%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gamma-delta%20T%20cells%20suppress%20microbial%20metabolites%20that%20activate%20striatal%20neurons%20and%20induce%20repetitive/compulsive%20behavior%20in%20mice&rft.jtitle=Brain,%20behavior,%20and%20immunity&rft.au=Cox,%20Laura%20M.&rft.date=2024-03-01&rft.volume=117&rft.spage=242&rft.epage=254&rft.pages=242-254&rft.issn=0889-1591&rft.eissn=1090-2139&rft_id=info:doi/10.1016/j.bbi.2024.01.214&rft_dat=%3Cproquest_cross%3E2919747147%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919747147&rft_id=info:pmid/38281671&rft_els_id=S0889159124002265&rfr_iscdi=true |