Gamma-delta T cells suppress microbial metabolites that activate striatal neurons and induce repetitive/compulsive behavior in mice

•γδ T cells regulate the gut microbiota.•In the absence of γδ T cells, mice develop a microbial dysbiosis with the growth of microbes involved in the metabolism of aromatic amino acids.•The gut microbiota from γδ T cell deficient mice produces high amounts of hippurate.•Hippurate reaches the brain w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain, behavior, and immunity behavior, and immunity, 2024-03, Vol.117, p.242-254
Hauptverfasser: Cox, Laura M., Tatematsu, Bruna K., Guo, Lydia, LeServe, Danielle S., Mayrink, Julia, Oliveira, Marilia G., Donnelly, Dustin, Fonseca, Roberta C., Lemos, Luisa, Lanser, Toby B., Rosa, Ana C., Lopes, Juliana R., Schwerdtfeger, Luke A., Ribeiro, Gabriela F.C., Lobo, Eduardo L.C., Moreira, Thais G., Oliveira, Andre G., Weiner, Howard L., Rezende, Rafael M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•γδ T cells regulate the gut microbiota.•In the absence of γδ T cells, mice develop a microbial dysbiosis with the growth of microbes involved in the metabolism of aromatic amino acids.•The gut microbiota from γδ T cell deficient mice produces high amounts of hippurate.•Hippurate reaches the brain where it activates striatal neurons expressing the dopamine type 1 receptor (D1R).•Overactivation of striatal D1R + neurons lead to repetitive/compulsive behavior. Intestinal γδ T cells play an important role in shaping the gut microbiota, which is critical not only for maintaining intestinal homeostasis but also for controlling brain function and behavior. Here, we found that mice deficient for γδ T cells (γδ-/-) developed an abnormal pattern of repetitive/compulsive (R/C) behavior, which was dependent on the gut microbiota. Colonization of WT mice with γδ-/- microbiota induced R/C behavior whereas colonization of γδ-/- mice with WT microbiota abolished the R/C behavior. Moreover, γδ-/- mice had elevated levels of the microbial metabolite 3-phenylpropanoic acid in their cecum, which is a precursor to hippurate (HIP), a metabolite we found to be elevated in the CSF. HIP reaches the striatum and activates dopamine type 1 (D1R)-expressing neurons, leading to R/C behavior. Altogether, these data suggest that intestinal γδ T cells shape the gut microbiota and their metabolites and prevent dysfunctions of the striatum associated with behavior modulation.
ISSN:0889-1591
1090-2139
DOI:10.1016/j.bbi.2024.01.214