Local Well-Posedness of the Skew Mean Curvature Flow for Small Data in d≧2 Dimensions
The skew mean curvature flow is an evolution equation for d dimensional manifolds embedded in R d + 2 (or more generally, in a Riemannian manifold). It can be viewed as a Schrödinger analogue of the mean curvature flow, or alternatively as a quasilinear version of the Schrödinger Map equation. In an...
Gespeichert in:
Veröffentlicht in: | Archive for rational mechanics and analysis 2024-02, Vol.248 (1), p.10-10 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The skew mean curvature flow is an evolution equation for
d
dimensional manifolds embedded in
R
d
+
2
(or more generally, in a Riemannian manifold). It can be viewed as a Schrödinger analogue of the mean curvature flow, or alternatively as a quasilinear version of the Schrödinger Map equation. In an earlier paper, the authors introduced a harmonic/Coulomb gauge formulation of the problem, and used it to prove small data local well-posedness in dimensions
d
≧
4
. In this article, we prove small data local well-posedness in low-regularity Sobolev spaces for the skew mean curvature flow in dimension
d
≧
2
. This is achieved by introducing a new, heat gauge formulation of the equations, which turns out to be more robust in low dimensions. |
---|---|
ISSN: | 0003-9527 1432-0673 |
DOI: | 10.1007/s00205-023-01952-y |