Local Well-Posedness of the Skew Mean Curvature Flow for Small Data in d≧2 Dimensions

The skew mean curvature flow is an evolution equation for d dimensional manifolds embedded in R d + 2 (or more generally, in a Riemannian manifold). It can be viewed as a Schrödinger analogue of the mean curvature flow, or alternatively as a quasilinear version of the Schrödinger Map equation. In an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive for rational mechanics and analysis 2024-02, Vol.248 (1), p.10-10
Hauptverfasser: Huang, Jiaxi, Tataru, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The skew mean curvature flow is an evolution equation for d dimensional manifolds embedded in R d + 2 (or more generally, in a Riemannian manifold). It can be viewed as a Schrödinger analogue of the mean curvature flow, or alternatively as a quasilinear version of the Schrödinger Map equation. In an earlier paper, the authors introduced a harmonic/Coulomb gauge formulation of the problem, and used it to prove small data local well-posedness in dimensions d ≧ 4 . In this article, we prove small data local well-posedness in low-regularity Sobolev spaces for the skew mean curvature flow in dimension d ≧ 2 . This is achieved by introducing a new, heat gauge formulation of the equations, which turns out to be more robust in low dimensions.
ISSN:0003-9527
1432-0673
DOI:10.1007/s00205-023-01952-y