Lanthanum-doped magnetic biochar activating persulfate in the degradation of florfenicol
In this study, lanthanum-doped magnetic biochar (LaMBC) was synthesized from bagasse by co-doping iron salt and lanthanum salt, and it was characterized for its application in the activation of persulfate (PS) in the degradation of Florfenicol (FLO). The results indicated that the LaMBC/PS system co...
Gespeichert in:
Veröffentlicht in: | The Science of the total environment 2024-03, Vol.916, p.170312-170312, Article 170312 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, lanthanum-doped magnetic biochar (LaMBC) was synthesized from bagasse by co-doping iron salt and lanthanum salt, and it was characterized for its application in the activation of persulfate (PS) in the degradation of Florfenicol (FLO). The results indicated that the LaMBC/PS system consistently achieved a degradation efficiency of over 99.5 %, with a reaction rate constant 4.71 times as that of MBC. The mechanism of FLO degradation suggested that O2•- and •OH played dominant roles, contributing 40.92 % and 36.96 %, respectively, during FLO degradation. Through physicochemical characterization and quenching experiments, it can be concluded that the key reasons for the enhancement of MBC activation performance are as follows: (1) Lanthanum doping in magnetized biochar increased the Fe(II) content in MBC. (2) Lanthanum doping significantly improved the adsorption capacity of LaMBC, increased the concentration of pollutants on the catalyst surface and effectively enhancing the reaction rate. (3) Lanthanum doping effectively increased the surface Fe(II) content during the reaction process in LaMBC, promoted the generation of active oxygen species in PS. This study delves into synthesizing and applying LaMBC for PS activation and FLO removal. The emphasis is on comprehensively characterizing and experimenting to elucidate the mechanism, proposing an innovative approach for efficiently degrading antibiotic wastewater.
[Display omitted]
•LaMBC was synthesized from bagasse by co-doping iron salt and lanthanum salt.•The doping of La increased the Fe(II) content of MBC by 51.49 mg/g.•LaMBC adsorbed FLO and promoted surface reaction for high efficiency degradation. |
---|---|
ISSN: | 0048-9697 1879-1026 |
DOI: | 10.1016/j.scitotenv.2024.170312 |