Promising cellulose–based functional gels for advanced biomedical applications: A review
Novel biomedical materials provide a new horizon for the diagnosis/treatment of diseases and tissue repair in medical engineering. As the most abundant biomass polymer on earth, cellulose is characterized by natural biocompatibility, good mechanical properties, and structure-performance designabilit...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2024-03, Vol.260 (Pt 2), p.129600-129600, Article 129600 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Novel biomedical materials provide a new horizon for the diagnosis/treatment of diseases and tissue repair in medical engineering. As the most abundant biomass polymer on earth, cellulose is characterized by natural biocompatibility, good mechanical properties, and structure-performance designability. Owing to these outstanding features, cellulose as a biomacromolecule can be designed as functional biomaterials via hydrogen bonding (H-bonding) interaction or chemical modification for human tissue repair, implantable tissue organs, and controlling drug release. Moreover, cellulose can also be used to construct medical sensors for monitoring human physiological signals. In this study, the structural characteristics, functionalization approaches, and advanced biomedical applications of cellulose are reviewed. The current status and application prospects of cellulose and its functional materials for wound dressings, drug delivery, tissue engineering, and electronic skin (e-skin) are discussed. Finally, the key technologies and methods used for designing cellulosic biomaterials and broadening their application prospects in biomedical fields are highlighted. |
---|---|
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2024.129600 |