Mapping conservation priorities for wild yak (Bos mutus) habitats on the Tibetan Plateau, China
The wild yak (Bos mutus) is a cold-tolerant herbivore native to the Tibetan Plateau and has been categorized as vulnerable by the International Union for Conservation of Nature and Natural Resources. Low population densities within currently fragmented habitats and unclear landscape conservation pri...
Gespeichert in:
Veröffentlicht in: | The Science of the total environment 2024-03, Vol.914, p.169803-169803, Article 169803 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The wild yak (Bos mutus) is a cold-tolerant herbivore native to the Tibetan Plateau and has been categorized as vulnerable by the International Union for Conservation of Nature and Natural Resources. Low population densities within currently fragmented habitats and unclear landscape conservation priorities warrant attention. Herein, we employed the maximum entropy (MaxEnt) model using over 900 wild yak occurrence records to model wild yak habitat suitability. Our analysis revealed unprotected wild yak landscapes covering 30.79 % of the habitat area, indicating a conservation gap between protected areas (PAs) and wild yak habitats. To protect metapopulation dynamics and mitigate high risks of poaching, habitat degradation and fragmentation, resource competition, and degenerated genetic characterization of wild yaks in fragmented and degraded habitat, we identified eight habitat patches as landscape conservation units (LCUs) and 14 linkages among the LCUs, enhancing the connectivity between LCUs to decrease negative effects of genetic threats. A centrality analysis demonstrated that Changtang, Arjinshan, and Hoh Xil national nature reserves and their linkages are all critical for the maintenance of habitat connectivity. Here, we suggest that habitat- and LCU-specific conservation strategies should be highlighted during the establishment of PAs and transboundary cooperation. Ultimately, our results can assist conservationists and land managers in comprehending wild yak distribution, movement, and habitat requirements, as well as for the development of effective protection strategies. Furthermore, the combined modeling method (MaxEnt–Zonation–InVEST) could be utilized as a component for identifying conservation priorities and linkages between core patches for species and assessing the efficiency of PAs, core habitats, and corridors in achieving conservation goals. Our study can provide a framework in identifying priority conservation and connectivity between habitat patches to facilitate effectively conservation and genetic resilience for endangered species in fragmented habitats.
[Display omitted]
•~31 % of the wild yak range is located outside protected areas of the Tibetan Plateau.•8 habitat patches were identified as wild yak landscape conservation units (LCUs).•Infrastructure and pasture fences have posed a threat to linkages and LCUs.•Wild yaks face severe habitat degradation in their distribution range.•Transboundary cooperation and community participat |
---|---|
ISSN: | 0048-9697 1879-1026 |
DOI: | 10.1016/j.scitotenv.2023.169803 |